

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume I: NORTH COASTAL AREA

DECEMBER 1966

MAY 8 1967

HUGO FISHER
Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY
UNIVERSITY OF CALIFORNIA

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume I: NORTH COASTAL AREA

DECEMBER 1966

HUGO FISHER
Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

FOREWORD

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletin Nos. 23, 39, 65, 66, and 77. With the inauguration of this series of reports, publication of the earlier reports was suspended. This is the third in the new series of reports.

Bulletin No. 130 is published annually in five volumes, each volume reporting hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas.

This report is Volume I, "North Coastal Area". It includes five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurements", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality".

The collection and publication of data contained in Bulletin No. 130 is authorized by Sections 225, 226, 228, 229, 232, 345, 12609, 12616, and 12622 of the California Water Code.

The hydrologic data programs of the Department of Water Resources are designed to supplement the activities of other agencies and present useful, comprehensive, accurate, and timely hydrologic data to the public.

Other agencies have generously assisted in collecting much of the data presented in this bulletin. I wish especially to acknowledge the helpful assistance given by the Geological Survey, the Forest Service, the Weather Bureau, the local County Farm Advisors of the Agricultural Extension Service, the California Department of Public Health, and the many local weather observers who have so unselfishly given of their time.

William E. Warne, Director Department of Water Resources The Resources Agency State of California

Avil E. Louis

December 12, 1966

TABLE OF CONTENTS

	Page
ORGANIZATION	OF BULLETIN NO. 130 SERIES
FOREWORD .	
AREA ORIENTA	TION MAP iv
METRIC CONVE	RSION TABLE
ORGANIZATION	, DEPARTMENT OF WATER RESOURCES ix
ABSTRACT .	
TEXT	
	APPENDIXES
Appendix	
A	CLIMATE
В	SURFACE WATER FLOW
С	GROUND WATER MEASUREMENTS
D	SURFACE WATER QUALITY
E	GROUND WATER QUALITY
	FIGURES
Figure	
A-1	Mean Seasonal Precipitation
B-1	Surface Water Measurement and Quality Monitoring Stations, 1964-65
C-1	Ground Water Basins, 1964-65

TABLES

Table		Page
A-1	Index of Climatological Stations for 1964-65	11
A-2	Precipitation Data for 1964-65	13
A-3	Storage Gage Precipitation Data for 1964-65	15
A-4	Temperature Data for 1964-65 · · · · · · · · · · · · · · · · · · ·	16
A-5	Evaporation Data for 1964-65 · · · · · · · · · · · · · · · · · · ·	18
B-1	Daily Mean Discharge	
	Shasta River at Edgewood Little Shasta River near Montague Etna Creek near Etna Moffett Creek near Fort Jones Weaver Creek near Douglas City Browns Creek near Douglas City North Fork Trinity River at Helena Big Creek near Hayfork	27 28 29 30 31 32
B-2	Streamflow Measurements at Miscellaneous Sites	34
C-l	Average Ground Water Level Changes in North Coastal Area Basins, Spring 1964 - Spring 1965	42
C-2	Ground Water Levels at Wells	43
D-1	Index of Sampling Stations	53
D-2	Analyses of Surface Water	5 ⁴
D - 3	Analyses of Trace Elements in Surface Water	81
E-1	Analyses of Ground Water	87
Plate	PLATES (Bound at back of bulletin)	
1	Climatological Observation Stations, 1964-65	

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	ENT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U. S. gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U. S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

State of California The Resources Agency DEPARIMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor

HUGO FISHER, Administrator, The Resources Agency

WILLIAM E. WARNE, Director, Department of Water Resources

ALFRED R. GOLZE', Chief Engineer

JOHN R. TEERINK, Assistant Chief Engineer, Area Management

NORTHERN DISTRICT

Gordon W. Dukleth District Director
Wayne S. Gentry Chief, Operations Section
Activities covered by this report were under the supervision of
Robert F. Middleton, Jr Chief, Hydrologic Data Unit
Assisted by
Lester L. Lighthall
Linwood L. Bates Redding Field Office
Walter D. McIntyre Colusa Field Office
Charles G. Hodge
Seth K. Barrett
Lee R. Gibson

Reviewed and coordinated by Statewide Planning Office Data Coordination Branch

ABSTRACT

Tables show data on climate and ground water levels for the period July 1, 1964 to June 30, 1965; and on surface water flow and surface and ground water quality for the period October 1, 1964 to September 30, 1965. Figures show mean seasonal precipitation, surface water measurement and quality monitoring stations and ground water basins. A foldout plate shows locations of climatological observation stations.

The Department of Water Resources is concerned with the development and use of water supplies and with the methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies including its uses for irrigation, drainage, hydropower, flood control, navigation, recreation, and fisheries enhancement; the operation of existing projects; and other associated engineering projects. The Department's hydrologic data programs are also designed to supplement and augment the activities of other agencies.

The tabulation on page 2 presents a summary of the active hydrologic data programs in the North Coastal Area during 1964-65. The table specifies the origin of the programs, program objectives, program authorizations, the type of data collected, the collection agency, the frequency of measurement or service, and the total number of stations measured during 1964-65.

The Department's climatologic and surface water measurement stations have been selected to augment the basic hydrologic networks of the U. S. Weather Bureau and U. S. Geological Survey, respectively. The current federal hydrologic data programs are normally not sufficient to meet the many needs of the State.

The climatologic data collected by the Department include information on precipitation, temperature, and evaporation. Both surface water flow and recharge to ground water vary in direct response to precipitation. Evaporation is an important part of the consumptive use of water and, with other climatological events, affect conditions and use of a water supply.

Ground water is the source of supply for about one-half of the water beneficially used in California. However, the use of ground water in the North Coastal Area is less extensive than in other areas of the State. Data on the

SUPEARY OF HYDROLOGIC DATA IN THE NORTH COASTAL AREA, 1964-65

		***			Q	Data	
Program 8	Origin	Purpose	: Authorization	: Type Collected	: Collected by	Frequency Measured or Serviced	: Number of
Climatologic Data	1956	7 8	Secs. 228, 12609, 12616	Precipitation Precipitation	DWR Cooperators USWB	Daily Daily	148 72
		conditions to: (1) predict runoff; (2) plan and operate water projects; and (3) make	or warter code	Storage Gages Storage Gages	DWR USWB	Annually Annually	9 5 2
		all weather data available for ready use.		Temperature Temperature	DWR Cooperators USWB.	Daily Daily	17 5
				Evaporation Evaporation	DWR Cooperators USWB	Daily Daily	t 5
				Wind	USWB	Daily	Not measured in 1964-65
Surface Mater Measurement	1924	To provide an inventory of data on surface water which will be readily available for: (1) forecasting streamflow; (2) planning water development projects; (3) operation of flood control and multipurpose projects; and (4 formulation of agreements on water rights without expensive littgation.	Sees, 225, 1 226, 228, 12609, 12616 n- of Water Code vv- ra- (4)	Streamflow	DWR	Serviced twice each month, measured monthly	ω
Ground Water Measurement	1929	To compile representative ground water data, so that: (1) information will be readily available for future conjunctive operations; (2) appraisal can be made of drainage and overdraft problems; (3) local interest and cooperation will be stimulated; and (4) planning to develop the potential ground water basins can be facilitated	Secs. 225, 226, 228, 12609 of Water Code	Depth to Ground USGS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Monthly	£

1				0.0		Data	rd.	
	Program	s Origin	Purpose	: Authorization:	: Type Collected : Collected by : or Serviced	Collected by :	red	: Number of
l w	Surface Water Quality Data	1951	To compile representative Sec. 226, 229 surface water quality data 12609, 12616 to: (1) determine the qual— of Water Code ity of the State"s surface waters; (2) detect changes in quality and alert control agencies when adverse changes	Sec. 226, 229 12609, 12616 - of Water Code	Mineral (Standard DWR mineral semiannu- ally, partial mineral remaining months)	DWR DWR	Monthly Semiannually	8 33
			ocour; (3) determine trends; (4) record and catalogue the data in a readily available form; and (5) disseminate the data and information oollected.		Racteriological	DWR	Monthly	1 π
-3-	Ground Water Quality Data	1953	To compile representative ground water quality data to: (1) establish existing	Seo. 226, 229, 12609, 12616, of Water Code	Standard and pertial mineral	DWR and local county farm advisors	Annually	₹
			ground water Dodies; (2) determine the quality of the State's ground waters; (3) detect changes in quality and alert control agencies when adverse changes occur; (4) determine trends; and (5) provide for organization and ready dissemination of ground water quality data.	(2)	Trace Elements (heavy metals)	DWR and local county farm advisors	Selected intervals Not sampled in 1964-65	Not sampled in 1964-65

current status of the major ground water basins are collected and processed within the framework of the Department's Ground Water Measurement Program. During 1964-65, monthly field measurements were made by the U.S. Geological Survey. The Department reviews, processes, and edits the data. Since only a few wells are measured in many of the monitored ground water basins, it is difficult to derive meaningful values for the average changes in water levels. However, the historical measurements do indicate trends in local ground water levels.

Water quality is a measure of a water supply's characteristics which affect the useability of the water. As greater demand is placed on available water supplies, more effective use and reuse of the State's waters become necessary. Since quality may limit the useability of a water, knowledge of quality conditions is necessary for the most efficient use of water supplies.

Efforts are continuously being made to improve the quality and useability of the hydrologic data networks of both the federal government and the State.

The future conduct of the hydrologic data programs in the North Coastal Area, particularly with respect to the water quality and ground water measurement activities, will be to reduce the frequency of measurements at a number of stations and yet continue to retain the quality of data currently obtained. An increasing effort is being made to more adequately define the ground water aquifer through geologic investigations. With this increased emphasis on the differentiation between the various ground water zones, the data collected can be made more useful and meaningful.

APPENDIX A
CLIMATE

CLIMATE

The Department of Water Resources cooperates with the U. S. Weather Bureau and local agencies in the collection of climatological data. Climatological data programs are dependent, for the most part, on the cooperation of local observers. Data from selected key stations are published by both the Department and the U. S. Weather Bureau.

The tables in this appendix include total monthly and seasonal precipitation; monthly temperatures showing maximum, average maximum, average, average minimum, and minimum temperatures; evaporation data showing the total evaporation monthly for the period July 1, 1964 through June 30, 1965; and total annual precipitation for 1964-65 as measured at the storage gages in the northern part of the State (so installed because of their extreme remoteness).

The reporting period for climatologic data is defined as the 15-month period from July 1 of one year through September 30 of the subsequent year. Climatologic data for the period July 1, 1965 through September 30, 1965 were not available for this report.

Most of the stations use standard meteorological equipment. Commonly accepted procedures are employed in summing up monthly totals and computing mean values. In the preparation of the mean seasonal isohyetal map (Figure A-1) the long term mean values are based on the 50-year mean period 1905-06 to 1954-55 for those stations with sufficient length of record. At other stations, all available records are used in determining the mean. Station density in the North Coastal Area is generally adequate for making reasonable estimates of average conditions over extended areas, with the possible exception of the areas in the high altitudes.

In some instances the weather data program has been hampered by relatively inaccessible mountainous areas and an inability to obtain the

services of qualified local weather observers.

A description of the tables and plates included in this appendix follows:

Table A-1, "Index of Climatological Stations", contains a listing of all active climatological stations in the North Coastal Area during the period July 1, 1964 through June 30, 1965. The station names are arranged in alphabetical order. Each station is given a code number which is composed of two parts -- a drainage basin designation, and an Alpha Order Number which corresponds to the alphabetical sequence of the station with respect to the other stations in that drainage basin. A sub-number of two digits is occasionally affixed to the four-digit Alpha Order Number. This is necessary to provide for greater flexibility as new stations are added to the listing. The cooperator index number is used when the Alpha Order Number is in conflict with the U. S. Weather Bureau number.

Other information is also given, including the year in which the record was begun, the year the record ended, and the years of missing record. The code for the county in which the station is located is shown below:

County	Code
Del Norte	08
Humboldt	12
Mendocino	23
Modoc	25
Siskiyou	47
Trinity	53

Table A-2, "Precipitation Data", contains a listing of all precipitation measurements collected in the North Coastal Area during the period July 1, 1964 through June 30, 1965. The listing is in alphabetical order by station name. The table includes a summary of total seasonal precipitation and lists each monthly amount.

Table A-3, "Storage Gage Precipitation Data," presents the total 1964-65 seasonal precipitation at a number of storage gages located in remote regions in

the North Coastal Area.

Table A-4, "Temperature Data", describes air temperature data collected by the Department of Water Resources in the North Coastal Area. The stations are listed in alphabetical order. A listing by drainage basin and Alpha Order Number is also given. A column titled "Season" summarizes the extreme values of temperature reported at each station and also lists the mean of the monthly values. The maximum, average maximum, average, average minimum, and minimum monthly values are given for each station, and are based on 1964-65 data.

Table A-5, "Evaporation Data", describes the data collected from all evaporation stations in the North Coastal Area. This information is used to determine loss of water by evaporation from existing and proposed water storage and conveyance facilities. The stations are listed alphabetically. The table includes a listing of drainage and Alpha Order Numbers corresponding to the station names. Total evaporation is shown for each month during the period July 1, 1964 through June 30, 1965.

Figure A-1, "Mean Seasonal Precipitation", shows the rainfall pattern over the North Coastal Area. Lines of equal mean seasonal precipitation are drawn to define the normal amounts. The lines represent normals based on a 50-year mean period of 1905-06 through 1954-55.

Plate 1, "Climatological Observation Stations", shows the locations of all actively reporting climatological stations in the North Coastal Area. These include the U. S. Weather Bureau stations reported in the U. S. Department of Commerce monthly publication, "Climatological Data", and many stations operated by cooperative observers. A legend on the map describes the symbols used for the various types of measuring equipment and observation made.

TABLE A-I INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65 NORTH COASTAL AREA

	Station	=-					Troct	Meridian		_			•		for	tor's			Code
Number	Nome	Elevotion (in faet)	Section		Township	Renge	40-Acre T	Bose & Me		Latitude			Longitude		Cooperator	Cooperotor's index Number	Record	Record	Years Missing County Code
	<u> </u>	<u> </u>					14	ě	0	,	//	0	/_	Ħ					٥١٩
F6 0018 F6 0088 F5 0253 F3 0715 F4 0738	ADANAC LODGE ALDERPOINT ARCATA A P BESWICK 7 S BIG BAR RANGER STA	435 217 6140	SEC SEC SEC	27 19 33	T23N T03S T07N T47N T33N	ROSE ROSE ROSW	Q	H H M	40 40 41	11 58 52	00 18 00	123 124 122	36 05 14	00 24 00	000 900 000 900 900		1950 1940 1957 1952 1943		23 12 12 47 53
F5 0764 F2 0786-01 F3 0899 F5 0901 F5 0903	BIG LAGOON BIG SPRINGS 4 E BLUE CREEK MTN LO BLUE LAKE BLUE LAKE REDWOOD CR	2955 4870 105	SEC SEC SEC	05 30 30	T09N T43N T12N T06N T06N	RO4W RO4E RO2E	R R A	м Н	41 41 40	35 23 52	30 42 54	122 123 123	19 45 59	42 54 12	000 900	PN2125	1947 1960 1960 1951 1956		12 47 08 12 12
F4 0929 F6 1046 F1 1050 F6 1080 F6 1083	BOARDCAMP MTN BRANSCOMB 2 NW BRAY 10 WSW BRIDGEVILLE 4 NNW BRIDGEVILLE P 0	1480 5759 2050	SEC SEC	09 24 27	T04N T21N T43N T02N T01N	R16W R03W R03E	М	м м Н	39 41 40	41 34 31	12 00 00	123 122 123	39 08 49	36 00 00	000 900 900 900 900		1963 1959 1951 1954 1959		12 23 47 12 12
F6 1181 F6 1210 F4 1215 F4 1215-15 F2 1316	BULL CREEK BURLINGTON ST PARK BURNT RANCH 1S BURNT RCH HMS CALLAHAN RANGER STA	200 2150 1500	SEC SEC	12 23 14	T01S T02S T05N T05N T40N	ROSE ROSE ROSE	D E F	$_{\rm H}$ $_{\rm H}$	40 40 40	18 47 48	30 48 30	123	54 28 28	24 48 30	000		1960 1950 1945 1963 1943		12 12 53 53 47
F0 1446 F7 1505 F3 1606 F6 1608 F3 1799	CAMP SIX LOOKOUT CAPE RANCH CECILVILLE 5 SE CEDAR CREEK HATCHERY CLEAR CREEK	710 2980 950	SEC SEC SEC	23 12 14	T17N T01N T37N T23N T15N	RO3W R11W R17W	F	H M M	40 41 39	27 06 50	24 00 24	124 123 123	22 03 42	48 00 18	900		1963 1959 1954 1957 1959		08 12 47 23 47
F4 1886 F3 1990 F6 2081 F6 2084 F0 2147	COFFEE CREEK RS COPCO DAM NO 1 COVELO COVELO EEL RIVER RS CRESCENT CITY 1 N	2700 1385 1514	SEC SEC SEC	29 12 28	T07W T48N T22N T23N T16N	RO4W R13W R11W	Р	M M M	39	59 47 50	00	123	20 15 05	00	900 900		1960 1928 1921 1940 1885		53 47 23 23 08
F0 2148 F0 2150 F0 2152 F1 2188 F6 2218	CRFSCENT CITY 7 ENE CRESCENT CITY HMS CRESCENT CITY 11 E CROWDER FLAT CUMMINGS	50 360 5175	SEC SEC	20 30 20	T16N T16N T16N T47N T23N	RO1W RO2E R11E	ВК	HHM	4 1 4 1 4 1	46 45 53	00 18 00	124 123	12 59 44	00 30 00		PN2188	1913 1941 1947 1958 1927		08 08 08 25 23
F1 2480 F6 2490 F0 2749 F2 2899 F6 2910	DORRIS INSPECT STA DOS RIOS ELK VALLEY ETNA EUREKA WB CITY	927 1711 2912	SEC SEC	31 34 28	T48N T22N T19N T42N T05N	R13W R04E R09W		M H M	39	43 00 28	00		21 43 54	00	000 900 900 900 900		1959 1917 1938 1935 1878		47 23 08 47 12
F7 3025 F6 3030 F5 3041 F3 3122 F4 3130	FERNDALE 8 SSW FERNDALE 2NW FIELDBROOK 4 D RCH FOOTHILL SCHOOL FOREST GLEN	10 285 2960	SEC SEC SEC	34 36 25	T01N T03N T07N T46N T015	RO2W RO1E RO5W	K P F	HHM	40 40 41	35 56 48	54 36 42	124 124 122	16 01 22	36 06 18	900 000		1959 1963 1956 1962 1930		12 12 12 47 53
F3 3151 F0 3173 F2 3176 F2 3182 F6 3194	FORKS OF SALMON FORT DICK FORT JONES 6 ESE FORT JONES RANGER ST FORTUNA	46 3324 2720	SEC SEC SEC	14 12 02	T10N T17N T43N T43N T03N	RO1W RO8W RO9W	c	H M M	4 1 4 1 4 1	52 35 36	00 00 00	124 122 122	09 43 51	00	900 900 900		1959 1951 1941 1936 1955		47 47 47 12
FO 3357	FOX CAMP GAPBERVILLE GAPBERVILLE HMS GASQUET RANGER STA GAZELLE - EPPERSON	340 540 384	SEC SEC SEC	24 24 21	T025 T045 T045 T17N T43N	RO3E RO3E RO2E	G N	H H H	40 40 41	06 06 52	00 00	123 123 123	48 47 58	00 40 00	900 809 900		1960 1938 1935 1940 1950		12 12 12 08 47
F2 3363 F2 3363-05 F1 3564 F2 3614 F6 3647	GAZELLE LOOKOUT GAZELLE TUCKER GRASS LAKE HMS GREENVIEW GRIZZLY CRK REDWOOD	2690 5080 2818	SEC SEC SEC	16 28 29	T41N T43N T44N T43N T01N	RO6W RO3W RO9W	G	M M M	4 1 4 1 4 1	34 37 33	30 48 00	122 122 122	32 11 54	36 30 00	000		1956 1964 1954 1943 1963		47 47 47 47 12
F3 3761 F6 3785 F6 3810 F4 3859 F4 3949	HAPPY CAMP RANGR STA HARRIS 7 SSE HARTSOOK INN HAYFORK RANGER STA HIDDEN VALLEY RCH	1910 470	SEC SEC	27 24 12	T16N T05S T05S T31N T01N	ROSE ROSE R12W	N D R	H H M	39 40 40	59 00 33	24 48 00	123 123 123	36 47 10	42 30 00	000 900		1914 1953 1957 1915 1959		47 23 12 53 53
F6 3956 F3 3987 F6 4037-02 F7 4074 F7 4074-01	HIGH ROCK HILTS HOLMES HONEYDEW 2 WSW HONEYDEW HUNTER	2900 150 380	SEC SEC SEC	23 33 02	T015 T48N T01N T035 T035	RO7W RO2E RO1W	R C	M H H	42 40 40	00 25 14	00 06 18	122 123 124	38 57 09	06 00	900 900		1960 1939 1954 1953 1955		44 47 12 12

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65 NORTH COASTAL AREA

	Stetlon	tion (tag	ç	qië		Tract	Meridian	•			•pnt		Cooperator	Caaperatar's Index Number	•	0	Missing	Code
Number	Name	Elevation (in fest)	Section	Township	R o o	40-Acre	Bose &	o Lotitude			- Lengitude	N	Coop	Caaperal Index Number	Record	Recard	Years 9	County
F5 4077 F4 4082 F4 4084 F4 4191 F0 4202	HONOR CAMP 42 HOOPA HOOPA 2 SE HYAMPOM IDLEWILD HMS	350 315 1260	SEC 2 SEC 2	31 TO7N 25 TO8N 31 TO8N 25 TO3N 36 T17N	R04E R05E R06E		H 4 H 4 H 4	1 0: 1 0: 0 3	3 00 2 00 7 00	123 123 123	40 39 28	00	900 900 900		1956 1941 1954 1940 1946			12 12 12 53 08
F3 4577 F6 4587 F5 4602 F6 4690 F6 4698	KLAMATH KNEELAND 10 SSE KOPBEL LAKE MOUNTAIN LAKE PILLSBURY NO 2	2356 150	SEC 2 SEC 2	5 T13N 3 T03N 18 T06N 11 T05S	ROZE ROZE ROZE	Р	H 4 H 4 H 4	0 38 0 5	3 00 2 00 1 00	124 123 123 123 122	54 57 24	00 30	900 900		1941 1954 1937 1939 1964			08 12 12 53 17
	LAVA BEDS NAT MON LAYTONVILLE LITTLE RIVER LITTLE SHASTA LONG BELL STATION	1640 150 2725	SEC SEC 2	18 T45N 11 T21N 11 T08N 16 T45N 10 T42N	R15W R01E R05W	P C	M 3 H 4 M 4	9 4; 1 0; 1 4;	2 00 L 54 3 00	123 124 122	29 06 23	00 36 00	900 000 000		1940 1940 1949 1960 1958		06	47 23 12 47 25
F5 5244 F1 5505 F6 5676 F6 5711 F6 5713	MAD RIVER RANGER STA MEDICINE LAKE MINA 3 NW MIRANDA 4 SE MIRANDA SPENGLER RCH	6660 2875 263	SEC 2 SEC 3	.7 TOTA .0 T43N .8 T055 .0 T035 .9 T035	RO3E RO7E RO4E	Α	м 4 Н 4 Н 4	1 31 0 00 0 1	00	123 121 123 123 123	37 23 47	00 30 00	900 000 900		1943 1946 1927 1964 1939			53 47 53 12 12
F2 5783 F2 5785 F1 5941 F4 6032 F6 6050	MONTAGUE MONTAGUE 3 NE MOUNT HEBRON R S MUMBO BASIN MYERS FLAT	2640 4250 5700	SEC : SEC :	7 T45N 8 T45N 12 T46N 15 T39N 30 T02S	R05W R01W R06W	E	M 4 M 4 M 4	1 4 1 1 4 1 1 1 1	5 00 7 00 2 00	122 122	28 00 32	00	900 900 900	045783	1888 1948 1942 1946 1950		05	47 47 47 53 12
F3 6328 F6 6408 F5 6497-01	MYERS FLAT-CRANE OAK KNOLL RANGER STA OLD HARRIS ORICK 3 NNE ORICK ARCATA REDWOOD	1963 2225 50	SEC : SEC :	30 TO25 12 T46N 10 TO45 12 T11N	R09W R05E R01E	G K	M 4 H 4 H 4	1 50 0 09 1 19	00 00 00 24	122 123 124	51 39 02	00 42 30	900 000 000		1963 1942 1956 1950 1954			12 47 12 12
	ORICK PRAIPIF CREEK ORLEANS PATRICKS PT ST PK PETROLIA PETROLIA 4 NW	403 250 175	SEC SEC	2 T11N 31 T11N 26 T09N 3 T025	ROSE ROSW ROSW	L	H 4 H 4 H 4	1 10 1 00 0 10	8 00 8 12 9 30	124	32 09 16	00 00 48	900 804 000		1937 1885 1947 1958 1953			12 12 12 12 12
F6 6851-15 F6 6976 E6 7404 E4 7698 F3 8025	PHILLIPSVILLE 1SE PLASKETT RICHARDSON GROVE SALYER RANGER STA SAWYERS BAR R S	6580 500 623	SEC : SEC :	9 T035 7 T22N 13 T055 14 T06N	RO9W RO3E ROSE	Α	M 3 H 4 H 4	9 44 0 00 0 5	12 2 3 00		51 47 35	00	000 900 900		1963 1960 1961 1931 1931			12 11 12 53 47
F7 8162 F6 8163	SCOTIA SEIAO VALLEY R S SHELTER COVE SHERWOOD VALLEY SMITH RIVER 2 WNW	1371 55 2170	SEC SEC	7 TO1M 11 T46M 16 T05S 32 T20M 21 T18M	R12W R01E R14W	R	M 4 H 4 M 3	1 5 0 0 9 3	0 36 2 2 36	124 123	11 04 26	42	905 900 901		1926 1953 1959 1958 1951			12 47 12 23 08
F3 8346 F6 8490 F4 9024 F1 9053	SOMESBAR 1W STANDISH HICKEY PARK TRINITY DAM VISTA PT TULELAKE TULELAKE INSP STN	850 2500 4035	SEC (04 T11N 13 T23N 16 T34N 06 T47N 31 T44N	R17W R08W R05E	F	M 3 M 4 M 4	9 5 0 4 1 5	2 30 8 00 8 00		43 46 28	30 00	900 900 900	049057	1954 1949 1959 1932 1953			12 23 53 47 25
F7 9177 F4 9490 F2 9499 F6 9527 F7 9654	UPPER MATTOLE WEAVERVILLE RANGER S WEFD FD WEOTT 2SE WHITETHORN	2050 3593 600	SEC SEC	33 TO25 12 T33N 11 T41N 12 TO25	RIOW ROSW ROSE	M H	M 4 M 4 H 4	0 4 1 2 0 1	4 00 6 00 8 29	123	56 23 53	00 00 40	900 900 000		1886 1869 1957 1961 1962			12 53 47 12 12
F6 9684 F6 9685 F6 9686 F1 9691-02 F2 9866	WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR WILLOW CREEK RANCH YREKA	1925 1365 5200	SEC (17 T18N 15 T17N 18 T18N 16 T46N 27 T45N	R13W R13W R11E	L	м 3 м 3 м 4	9 2 9 2 1 5	1 00		19 21 45	06	900	PN9692	1950 1935 1911 1960 1871		05	23 23 23 25 47
F6 9940	ZENIA 1 SSE	2880	SEC	22 1039	R06E	G	H 4	0 1	1 18	123	28	54	000		1950			53

TABLE A-2 PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA

Challer						Precipi	ration in	ninches					
Station	Season	July	Aug	Sept	Oct	Nov	Oec	Jan	Feb	Mar	Apr	May	June
SMITH RIVER													
CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY 11 E ELK VALLEY FORT DICK	84.12	1.65 1.24	0.38 0.00	0.50 0.14 T	1.40 1.60 1.16	14.61 18.16	33.18 50.24	10.97 15.02 20.98 14.73		1.19	10.00	1.67 1.59	0 • 54
GASOUET RANGER STA IDLEWILD HMS PATRICKS PT ST PK SMITH RIVER 2 WNW	99.03 94.27 83.99 91.36	0.84 0.55 2.00 4.60	0.63 0.14 0.10 0.75	0.04	0.85	16.57	47.59 25.30	18.87 12.91 14.31 17.70	3.31 3.32	1.00	9.45 11.72	1.10	0.76
LOST RIVER DORRIS INSPECT STA GRASS LAKE HMS LAVA BEDS NAT MON MOUNT HEBRON R S TULELAKE TULELAKE TULELAKE INSP STN	14.54 22.84 19.53 16.46 14.84	0.68 0.34 0.33 0.69	0.10 0.18 0.11 0.06	T 0.07 0.12 0.02	0.20 0.09 0.10 0.22	4.01 1.23 2.05 1.12	10.75 6.15 8.07 5.87	2.07 4.78 1.42 2.54	0.23 0.10 0.09 0.10	0.17 0.03 0.04 0.07	2.54 2.69 1.50	0.09 1.02 0.20 0.39	1.79 3.00 1.24 2.26
WILLOW CREEK RANCH	-	0.18	0.46	0.00	0.70	2.23	7.27	2.33	0.60	0.04	1.59	0 • 42	-
SHASTA-SCOTT BIG SPRINGS 4 E CALLAHAN RANGER STA ETNA FORI JONES 6 ESE FORT JONES RANGER ST	12.35 29.33 - - 24.60	0.28 0.62 0.90	T 0.03 0.07	0.11 0.00 0.15	0 • 54 0 • 41 0 • 29	3.03 4.96 2.59	14.63 20.58 10.47	4 • 03	1.12 0.93 0.75	0.07 0.12 0.16		0.15 0.34 0.37	1.95 0.42 0.82
GAZELLE — EPPERSON GAZELLE TUCKER GREENVIEW LITTLE SHASTA MONTAGUE	18.62 19.76 24.89 15.73 15.49	0.64 0.06 0.75	0.00	0.08	0.36	1.98 2.95 1.59	9 • 78 14 • 56 6 • 71	3.75	0.28	0.04 0.00 1.10	2.97 1.39 2.21	0.30	1.08 0.88 0.95
MONTAGUE 3 NE WEED FO YREKA	- 34.34 23.20			0.26	0.92	3.49		5 • 22 3 • 02					
KLAMATH RIVER													
CECILVILLE 5 SE CLEAR CREEK COPCO DAM NO 1 FOOTHILL SCHOOL FORKS OF SALMON	71.72 21.22 19.21	0.52 0.29	0.04 0.00 0.22 0.00 0.00	0.23 0.08 0.20	0 • 95 0 • 21 0 • 39	2.27 1.63	10.71	- 15.71 3.33 1.78	0.48	0.05	2 • 8 4	- 0.15 0.23 0.15	0.73
HAPPY CAMP RANGR STA HILTS KLAMATH OAK KNOLL RANGER STA ORLEANS	62.44 26.37 - 34.88 62.20	0 • 11 1 • 72	0.03	0.06 0.12 0.05	0.38 1.33 0.61	2.56 21.11 3.85	13.74 30.59 17.71	11.36 3.96 - 6.82 11.52	1.08	1.07 1.92 0.17	2.56 8.88 3.53	0.52 1.30 0.38	0.27 0.53 0.46
SAWYERS BAR R S SEIAD VALLEY R S SOMESBAR IW	53.67	0.65	T	0.01	0.57	7.65	28.11	9.51 9.52	1.73	0.22	4.71	0 + 2 2	0.28
TRINITY RIVER													
TRINITY RIVER BIG BAR RANGER STA BURNT RANCH 1S BURNT RCH HMS COFFEE CREEK RS FOREST GLEN	45.01 51.60 46.59 59.09 73.89	0.16 0.05 0.00	0.00 0.00 0.40	0.00 0.00 0.10	1.42 1.07 4.36	9.14 9.32 10.29	22.59 22.24 21.37	9.54	1.04	1.20 7.81 1.23	5.84 5.64 7.87	0 • 0 9 * 0 • 15	0.58 0.46 0.14
HAYFORK RANGER STA HIDDEN VALLEY RCH HOOPA HOOPA Z SE HYAMPOM	38.77 75.49 68.74	0.43 0.13 0.05	T 0.05 0.04	0.13 0.01 0.01	3.17 0.38 0.68	13.19 12.98 13.06	31.96 33.88 31.43	7.51 16.41 11.63 11.73 9.15	1.70 1.72	1.83 1.09 0.94	6.49 6.19 8.70	0 • 0 2 0 • 0 7 0 • 0 4	0.63

TABLE A-2 (Continued)

PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA

		NOKI	H COA	SIAL	AREA								
Station						Precipit	ation in	inches					
Jidiidii	Season	July	Aug	Sept	Oct	Nav	Dec	Jan	Feb	Mar	Apr	May	June
TRINITY RIVER													
SALYER RANGER STA TRINITY DAM VISTA PT WEAVERVILLE RANGER S	57.97 41.21 46.02	0.37		0.75	1.78	7.73	16.15	11.11 5.95 8.46	1.10	1.13	4.86 5.46 4.39		0.62 0.14 0.16
MAD RIVER ARCATA A P	49.07	1.03	0.35	0.04	1.97	12.80	16.52	6.94	1.46	1.17	5.83	0.50	0.46
BIG LAGOON BLUE LAKE BLUE LAKE REDWOOD CR FIELDBROOK 4 D RCM		1.36 0.91 0.14		0.18 0.03 0.00	2.01 1.28	13.87 12.69 9.11	20.99	10.69 9.12 - 16.30	2.53 1.62 1.52	1.00 1.40 1.64	7.51	0.86 0.45 0.29 0.75	0.42
HONOR CAMP 42 KOR8EL	84.81			0.11				13 • 17 10 • 45		1.85	6.70 5.35	0.72	1.08
LITTLE RIVER MAD RIVER RANGER STA ORICK 3 NNE	59.68 74.09 69.51	1.64		0.12	2.55	12.99	17.12 36.67	9.70 11.56 11.50	2.28	2.26 2.00 0.93		1.04 0.22 1.25	0.90 0.37 0.51
ORICK ARCATA REDWOOD ORICK PRAIRIE CREEK	63.16 66.97	1.25 0.85						10.67 12.37		1.19		1 • 2 6 1 • 2 3	
EEL RIVER													
ADANAC LODGE ALDERPOINT BRANSCOMB 2 NW BRIDGEVILLE 4 NNW BRIDGEVILLE P 0	87.33 60.12 100.07 79.86 68.78	T 0.03 0.10		0.00	1.79 3.03 2.83	10.82 19.08 16.72	26.43 48.07 33.31	14.24 12.07 13.99 13.56 13.24	1.73 2.94 2.05	1.87 3.82 2.11	8 • 47 8 • 25	T 0•30	0.23 0.02 0.33 0.59 0.49
BULL CREEK BURLINGTON ST PARK	71.75	0.23	0.00					16.99 11.63				-	0.19
CEDAR CREEK HATCHERY COVELO CUMMINGS	-	0.11	0.05	0.00	2.81 1.05	14.55 10.42	22.50	10.66 15.06	1.13	2.08 2.95	3.43	0.00	
DOS RIOS EUREKA W8 CITY FERNDALE 2NW FORTUNA FOX CAMP	40.62	0.06 0.83 0.23 0.26 0.28	0.00 0.03 0.22 0.39 0.00	0.05	1.82 2.59 2.10	12.11 11.50 10.49	18.55	5 • 8 2 - 7 • 40	-	1.06	6.01	0.29	
GARBERVILLE GARBERVILLE HMS HARRIS 7 SSE HARISOOK INN HIGH ROCK	69.30 69.81 80.00 - 70.85	0.08	0.03	0.08	3.02 2.42 3.15	10.70 13.78 12.51	32.12 40.57	13.38 11.88 13.32 	1.68	2.00	8 • 2 7 5 • 5 9 —	0.02	
HOLMES KNEELAND 10 SSE LAKE MOUNTAIN LAKE PILLSBURY NO 2 LAYTONVILLE	74.60 - - -	0.11 0.46 0.13 T	0.08 0.03 0.00 0.00 0.04	0.12	1.78 2.16 2.60	12.92 11.70	32.84 31.87	9.83 12.72	1.70	1.90	5 • 47		0.92 0.33 -
MINA 3 NW MIRANDA 4 SE	63.74	-	_	_	_	_	_	9.69	1.60	1.70	7.80	0.00	-
MIRANDA SPENGLER RCH MYERS FLAT - CRANE OLD HARRIS	53.84 75.98	0.02 0.24 0.18	0.00 0.00 0.03	0.00	2 • 78 3 • 86 2 • 50	9.49 12.16 13.88	23.55	10.60	2.32	2.48	5.34 7.46	0 • 00 - 0 • 20	0.15
PHILLIPSVILLE ISE RICHARDSON GROVE SCOTIA SHERWOOD VALLEY STANDISH HICKEY PARK	67.03 84.64 52.84 90.88 83.62	0.11 0.00 0.16 0.15 0.04	0.00 0.00 0.10 0.04 0.05	0.00 0.00 0.03 0.00 0.00	2.83 3.25 2.73 2.39 2.81	12.22 11.55 9.74 16.77 13.59	28.15 39.86 18.37 44.99 40.12	11.99 17.17 9.50 12.62 14.87	1.62 2.12 1.78 2.69 2.20	1.92 2.35 1.20 3.33 2.46	7.77 8.01 8.77 7.28 7.01	0.20 0.14 0.18 0.13 0.30	0 · 22 0 · 19 0 · 28 0 · 19 0 · 17
WEOTT 2SE WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR ZENIA 1 SSE	70.06 66.15 64.05 76.86	0.20 0.15 0.10 0.00 0.33	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.25	3.83 1.68 1.81 1.83 3.01	12.50 12.78 13.59 12.87 13.76	27.16 31.41 26.01 28.65 32.85	12.76 10.23 9.69 12.23 12.82	2.24 1.92 1.98 0.77 2.34	1.85 2.66 2.60 2.53 2.47	8 · 89 5 · 17 6 · 57 5 · 14 8 · 51	0.07 0.06 0.00 0.03 0.05	0.56 0.09 - 0.00 0.37
MATTOLE RIVER													
CAPE RANCH FERNDALE 8 SSW HONEYDEW 2 WSW HONEYDEW HUNTER MANN RANCH													
PETROLIA PETROLIA 4 NW SHELTER COVE UPPER MATTOLE WHITETHORN	63.37 68.70 - 81.56 99.31	0.59 0.35 0.13 0.18 0.03	0.00 0.20 0.00 0.00	0.00 0.00 0.00 0.00	3.26 4.05 1.95 5.16 4.18	16.02 16.20 15.60 16.14 22.99	17.77 21.40 18.04 25.88 39.18	10.81 9.25 7.58 14.93 13.96	2.18 3.05 1.72 2.61 2.76	2.19 1.80 2.96 2.19 3.23	10.23 10.95 13.99 12.39	0.32 0.85 - 0.20 0.25	0.00 0.60

MENDOCINO COAST

TABLE A-3 STORAGE GAGE PRECIPITATION DATA FOR 1964-65 NORTH COASTAL AREA

	•	:	1964 - 65 Se	ason
Station	: Agency	: Date : Charged	: Date : Measured	: Precipitation in Inches
Beswick 7 S	DWR Northern District	7/18/64	6/30/65	51.41
Blue Creek Mountain Lookout	US Weather Bureau	8/15/63	8/20/64	116.45
		8/20/64	8/18/65	139.76
Boardcamp Mountain	DWR Northern District	7/30/64	6/28/65	137.43
Bray 10 WSW	DWR Northern District	7/18/64	8/30/65	27.92
Camp Six Lookout	DWR Northern District	6/30/64	6/29/65	119.21
Crowder Flat	DWR Northern District	7/ 8/64	6/30/65	22.90
Gazelle Lookout	DWR Northern District	9/16/64	6/29/65	25.33
Long Bell Station	DWR Northern District	7/10/64	7/ 1/65	34.03
Medicine Lake	DWR Northern District	7/17/64	6/30/65	56.90
Mumbo Basin	DWR Northern District	7/ 1/64	7/ 1/65	63.52
Plaskett	DWR Northern District	7/ 3/64	7/ 2/65	93.25

TABLE A-4

TEMPERATURE DATA FOR 1964-65 NORTH COASTAL AREA

	NORTH GOADIAL AREA														
Station			Temperature in Degrees Fahrenheit												
Number	Nome		Season	July	Aug	Sept	Oct	Nov	Dec	Jon	Feb	Mar	Apr	Моу	June
F5-0901	8LUE LAKE	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	55.1	79 70.2 62.2 54.3	82 71.1 62.7 54.3	94 71.7 59.0 46.3	82 66.0 56.8 47.6	70 59.2 51.8 44.3	64 57.1 51.7 46.3	66 57.8 50.2 42.5 32	67 58.5 50.0 41.6 32	76 63.2 52.7 42.2 33	72 60.7 53.3 45.9	69 63.8 54.4 45.1	74 64.4 56.8 49.1
F6-1083	BRIDGEVILLE P 0	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	-	97 80.8 67.8 54.9	90 78.9 66.6 54.4	106 78.8 62.8 46.8	94 74.7 60.0 45.3	72 57.0 48.6 40.3 27	61 53.1 47.6 42.1 29	65 55.5 47.6 39.8 32	70 60.6 49.2 37.7	76 64.9 53.1 41.3	84 64.5 54.6 44.8	-	-
F6-1181	BULL CREEK	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	-	101 84.9 67.7 50.5 38	98 84.8 65.5 46.2 42	-	-	-	=======================================	64 53.6 46.0 38.4 32	68 57.2 46.0 34.8 28	77 62.2 49.8 37.3	85 61.5 52.2 42.9 34	-	-
F6-1210	BURLINGTON ST PARK	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM		-	-	-	-	-	- - -	62 53.8 47.3 40.8 33	66 58.3 48.8 39.4	69 62.5 52.4 42.3 36	82 63.1 53.9 44.7 37	85 72.4 59.2 46.0 38	90 77.6 63.7 49.8 43
F4-1215-15	BURNT RCH HMS	MAXIMUM AVG.MAX AVERAGE AVG.MIN. MINIMUM	-	106 87.1 69.2 51.2	102 91.5 71.2 50.8 47	-	-	- - - -	62 29	62 33	69 26	72 - - 29	86	88 34	96 81.9 67.9 53.8
F6-1608	CEDAR CREEK HATCHERY	MAXIMUM AVG&MAX AVERAGE AVG&MIN MINIMUM		=======================================	102 87.0 68.8 50.5 44	107 83.1 63.8 44.6 40	95 77.5 60.9 44.3 34	70 53.8 46.6 39.3 25	- - - -	-	-	-	-	-	-
F3-1990	COPCO DAM NO 1	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	54.8	107 94.1 75.6 57.0 49	105 92.1 73.5 54.9 43	93 84.8 66.4 48.0	92 77.7 61.6 45.5 32	64 51.0 42.0 33.1 20	56 43.5 38.4 33.3	50 42.5 36.2 29.9 20	60 49.4 40.1 30.8 24	67 59.0 47.0 34.9 29	83 63.6 51.8 40.0	89 73.1 58.1 43.1 30	95 83.6 66.8 50.0
F1-2480	OORRIS INSPECT STA	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM	46.1	94 82.2 63.9 45.6 35	92 80.6 61.4 42.3 28	82 72.0 53.0 34.0 22	80 67.0 49.8 32.7	60 46.7 35.4 24.2	52 40.7 33.4 26.2 8	52 40.0 31.2 22.4	60 47.0 35.6 24.1	63 53.0 39.3 25.6	78 57.4 45.4 33.5 22	82 64.1 48.2 32.4 21	86 73.0 56.6 40.3 28
F5~3041	FIELDBROOK 4 D RCH	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM	-	80 71.0 61.1 51.2 46	85 72.8 61.6 50.4	99 73.5 59.8 46.2 41	81 68.2 55.6 43.1 33	65 54.3 46.7 39.1 27	63 51.8 45.6 39.5 24	61 50.7 44.1 37.5 28	64 54.2 44.6 35.1 27	68 58.0 47.6 37.3	71 58.2 50.3 42.4 34	-	75 63.5 55.5 47.1 40
F6-3322-01	GARBERVILLE HMS	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM	54.8	68.4	94 83.9 66.8 49.8		58.7		45.6	60 52.4 44.8 37.3	47.0		84 63.4 53.4 43.3	54.3	90 69.4 58.2 46.5
F 2-3363	GAZELLE LOOKOUT	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM	-		92 83.0 68.3 53.6	-	- - -	-	-	-	-	- -	-	-	- - - -
F1-3564	GRASS LAKE HMS	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM		91 81.1 62.1 43.1 34	-		44.4		58 41.6 31.6 21.6		34.4		38.3		
F4-3949	HIOOEN VALLEY RCH	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM	68.6 55.0 41.4	102 89.5 71.6 53.8 46	70.8	99 85.4 65.2 44.9		43.3		39.2	44.2		51.8	88 72.6 56.8 41.1 30	96 82.8 65.2 47.7
F6-4037-02	HOLMES	MAXIMUM AVG.MAX AVERAGE AVG.MIN MINIMUM		63.9	87 74.8 63.6 52.5	98 75.1 61.8 48.6 41	91 72.6 59.8 47.0 36	48.9	-	-	-	-	-	-	- - - - -

TABLE A-4 (Continued)

TEMPERATURE DATA FOR 1964-65 NORTH COASTAL AREA

Station			Temperature in Degrees Fahrenheit												
Number	Name		Seasan	July	Aug	Sept	Oct	Nav	Dec	Jan	Feb	Mar	Apr	May	June
F5-4077	HONOR CAMP 42	MAXIMUM AYG•MAX• AVERAGE AYG•MIN• MINIMUM	50.5	87 69.7 56.8 48.0	88 70.5 58.8 47.0 37	96 70.8 57.6 44.3	87 69.0 57.2 45.3	72 52.0 44.8 37.7 26	60 48.2 42.0 35.9 26	72 50.8 43.7 36.6 22	68 56.0 45.2 34.5 26	70 57.8 47.1 36.4	72 53.5 46.1 38.7	78 60.5 49.6 38.8 28	82 65.8 54.7 43.6
F0-4202	IDLEWILD HMS	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	-	104 90.0 71.0 52.1 42	92 86.7 67.7 48.7	98 82.8 64.0 45.3	90 75.4 59.7 44.0 34	64 50•2 43•6 36•9 24	58 44.7 42.4 40.2 24	-	-	=======================================	=	=	:
F5-4602	KORBEL	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	-	84 72.2 62.2 52.1 43	91 75.3 63.0 50.7	101 76.6 61.8 47.1	85 72.4 59.3 46.2 37	66 57.3 49.8 42.4 30	65 53.4 47.2 41.1 27	66 56.7 48.6 40.6 31	69 61.5 47.8 34.1 29	76 63.8 52.0 40.1 31	78 62.6 53.6 44.6 33	75 67.1 55.0 42.8 30	-
F2-5763	MONTAGUE	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	50.6	104 91.0 70.9 50.8 42	102 90.6 68.5 46.4 35	95 82.9 60.2 37.5	91 73.9 53.6 33.2 21	64 50.8 38.7 26.6	59 44.7 36.4 28.0	60 44.4 35.3 26.2	64 53.3 37.4 21.6	71 61.4 43.4 25.3	80 61.9 48.5 35.1 25	87 71.8 53.3 34.8 23	93 81.4 61.6 41.9 32
F6-6408	OLD HARRIS	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	53.0	108 87.7 71.1 54.5 42	100 87.5 69.8 52.1	108 84.3 66.4 48.6	96 77.5 63.1 48.7 36	66 53.7 45.8 37.8 28	62 47.3 40.6 33.8 18	68 48.5 40.8 33.1	65 51.8 40.7 29.6 20	82 55.6 44.4 33.1 28	90 54.9 46.2 37.5 26	90 63 • 3 50 • 4 37 • 4 28	97 69.1 56.2 43.3 36
F3-8083-01	SEIAD VALLEY R S	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	54.4	107 91.3 72.4 53.5 45	106 92.2 70.6 48.9 38	102 86.4 63.2 39.9	94 79.1 58.7 38.3 28	66 49.7 41.4 33.0 22	62 45.3 39.3 33.3 20	52 41.9 35.8 29.8	69 59.2 44.0 28.9	79 66.4 48.8 31.1 24	86 66.9 53.9 40.9	90 75 • 3 58 • 8 42 • 2 30	96 83.8 65.6 47.4 39
F6-8490	STANDISM HICKEY PARK	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	53.8	98 79.2 65.7 52.2	92 79.5 65.6 51.8	96 75.8 61.1 46.4	81 71.1 58.2 45.2	64 53.8 46.6 39.5 26	58 49.9 45.2 40.5 30	64 51.0 44.4 37.7 28	64 55.2 45.0 34.7 32	70 58.7 48.6 38.4	83 59.3 51.8 44.3	82 67•1 55•5 43•8 36	85 69.9 58.4 46.9
F1-9057	TULELAKE INSP STN	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	-	96 63.7 64.8 46.0	93 83.0 62.4 41.8 32	88 74.3 54.2 34.0 26	86 70.8 51.8 32.8 22	67 44.9 32.6 20.4	52 39.7 31.6 23.4	55 38.3 29.8 21.2	60 46.1 33.2 20.2	65 53.1 37.9 22.7	75 55.1 43.4 31.6	80 63.4 47.2 30.9	- - 40.9 30

TABLE A-5 EVAPORATION DATA FOR 1964-65 NORTH COASTAL AREA

NUMBER	STATION NAME		JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUL
F6-3030	Ferndale 2 MV	Evop.	4.42	4.79	3.77	2.45	1.08	-	.70	-	2.36	2.66	4.32	4.2
		Wind Movement												
		Water Temp Avg. Mox. Water Temp												
		Avg. Min.		-										
F3-4581-36	Klamath Falls Airport	Evap.	9.51	8.95	7.10	4.16	-	-	-	-	-	-	7.65	7.2
		Wind Movement Water Temp												-
		Avg. Max. Water Temp Avg. Min.												
F6-4698	Lake Pillsbury No. 2	Evap.	9.80	9.98	6.88	4.20	1.53	.62	.70	1.87	3.52	3.39	7.63	8,0
ro-4090	hake IIIIsbuty no. 2	Wind Mayament		7.70	0.00		2.73	.02	.,,	2.0	3.72	3.37	1005	
		Water Temp Avg. Max. Water Temp Avg. Min.	!											
F3-8083-01	Seiad Valley Ranger Station	Evap.	8.41	8.53	5.50	2.85	-	-	-	-	-	-	6.06	7.2
		Wind Mavement Water Temp												
		Avg. Max. Water Temp Avg. Min.												
F4-9024	Trinity Dam Vista Point	Evap.	10.07		9.89	6.35	3.25			_		2.66	7.26	8.2
14-9024	IIIII oy bam visua form	Wind Movement			7.07	0.37	31-2							
		Water Temp Av., Max. Water Temp Av., Min												
F1-9053	Tulelake	-	0.57	8.95	7.10	4.16						4.78	7.96	7.3
	Turetake	Evep. Wind		0.7)	1.10	4.10						7. 10	1.50	1
		Mayome of Water Temp Avp. Mox.												

APPENDIX B
SURFACE WATER FLOW

SURFACE WATER FLOW

The Surface Water Measurement Program is a long-term, continuing hydrologic data activity of the Department that provides accurate measurements of water stages and corresponding streamflow discharges.

In this volume, daily mean discharges are reported in Table B-1 for the eight Department stream gaging stations located in the North Coastal Area. In addition, monthly and annual mean, maximum, and minimum flows are reported for the period October 1, 1964 through September 30, 1965.

The flows reported in Table B-2 are miscellaneous measurements collected during the course of the Department's North Coastal Area Investigation. The data shown in Table Nos. B-1 and B-2 have been determined from observations during the current water year by Department personnel.

Definition of Terms

The following terms are commonly used:

Cubic foot per second is the unit rate of discharge of water. It is a measure of a cubic foot of water passing a given point in one second.

Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Water year is the 12-month period from October 1 of one year through September 30 of the subsequent year and is normally designated by the calendar year in which it is terminated.

Methods and Procedures

The program incorporates both field and office activities. The field activities include the installation and maintenance of gaging stations as well as the actual measurement of streamflow. An automatic water stage

recorder is in operation at all of the Department's stream gaging stations in the North Coastal Area. Measurement procedures which have been employed are consistent with those used by the U. S. Geological Survey.

The office work includes the preparation of data for computation by machine methods. This consists of developing a rating curve for each streamflow station from a series of instantaneous discharge measurements and a related formula. Manual computation of discharge is required when the direct stage-discharge relationship has been destroyed by ice forming on the control or by backwater from a tributary or control structure downstream. When flows at a single station are in excess of 140 percent of the highest measurement on the rating curve, the computed daily mean discharges from the electronic computer are shown as "estimates." Normally, the rating is good where there is a fixed channel and flow regimen at the station. The rating varies where aquatic growth or shifting sands are present. Where the rating is not permanent, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge.

Accuracy

Accuracy of the flow records range between "excellent" (less than 5 percent error) and "good" (less than 10 percent error). The records of monthly and seasonal mean discharge and runoff are generally more accurate than the daily flow records. Four of the eight gaging stations reported in this bulletin are rated as "excellent". These include the gages on the Little Shasta River, Etna Creek, Moffett Creek, and Browns Creek. The remaining four gages on the Shasta River, Weaver Creek, North Fork Trinity River, and Big Creek are rated as "good".

Significant Figures

The following are the significant figures used in reporting streamflow data, consistent with the accuracy of measurements obtained: 1. Daily flow - Cubic feet per second

0.0 - 9.9 Tenths

10 - 99 2 Significant figures 100 - above 3 Significant figures

2. Mean flow - Cubic feet per second

0.0 - 99.9 Tenths

100 - 999 3 Significant figures

1000 - above 4 Significant figures

The water year totals are reported to a maximum of four significant figures.

Locations of individual measurement stations are given in the tables of flow. Locations numbers have been assigned in accordance with the Department's hydrologic procedures. The location number is a six-digit number. The first letter designates the hydrographic area; the first number the river basin, the second number the reach of the stream. The last three numbers are sequence numbers assigned to a specific station. The sequence numbers begin at the downstream end of the reach.

The streamflow tables are arranged in a downstream order. Stations on a tributary entering between two main stem stations are listed between those stations and in downstream order. A stream measurement or gaging station normally derives its name from the stream and the nearest post office (e.g., Weaver Creek near Douglas City).

Station descriptions and historical data are provided at the bottom of each table of flow. Gage heights are in feet above an assumed "local" datum plane.

The locations of the eight surface water measurement stations or gaging stations measured by the Department in the North Coastal Area are shown on Figure B-1.

INDEX TO GAGING STATIONS

- 1 Little Shasta River near Montague (F-2-1300)
- 2 Shasta River at Edgewood (F-2-1700)
- 3 Etna Creek near Etna (F-2-5620)
- 4 Moffett Creek near Fort Jones (F-2-5420)
- 5 Browns Creek near Douglas City (F-4-1510)
- 6 Weaver Creek near Doublas City (F-4-1540)
- 7 North Fork Trinity River at Helena (F-4-2100)
- 8 Big Creek near Hayfork (F-4-4500)

INDEX TO SAMPLING STATIONS

- la Shasta River near Yreka
- 1b Scott River near Fort Jones
- 1c Klamath River above Hamburg Reservoir Site
- 1f Klamath River below Iron Gate Dam
- 2a Solmon River at Somesbar
- 2b Klamath River near Seiad Valley
- 2c Klamath River at Orleans
- 3 Klamath River near Klamath
- 3a Smith River near Crescent City
- 3b Redwood Creek at Orick
- 4 Trinity River near Hoopa
- 4a Trinity River at Lewiston
- 4b Trinity River near Burnt Ranch
- 5 Eel River near McCann
- 5a Van Duzen River near Bridgeville
- 5b Outlet Creek near Longvale
- 5c Eel River, Middle Fork at Dos Rias
- 5d Eel River near Dos Rios
- 5e Mill Creek near Covelo
- 5f Williams Creek near Covelo
- 5g Eel River, Middle Fork at Eel River Ranger Station
- 5h Black Butte River near Covelo
- 6 Eel River at Scotia
- 6a Mad River near Arcata
- 7 Eel River, South Fork near Miranda
- 7a Mattole River near Petrolia
- 7b Bear River near Copetown

TABLE B-I

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1965	F21700	SHASTA RIVER AT EDGEWOOD

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	8.2*	46	71	93	127	94	131	175	90	26	11	11	
2	8.4	49	60	100	119	90	114	147	82	23	13	12	
3	8.9	48	43	111	115	87	79	125	83	20	14	10	
4		47	37	92	109	82	72	108	87	20	12	10	
5	11	48	34	568 E	130	84	73	54 #	79	20 .	12 +	10	
	• •				_								
6	11	50	32	381 E	110	82	88	86	70	19	13	10	
7	11	51	28	213 *	102	80	78	76	74	16	13	8.8	
8	13	78	30	148	97	81	86	72	71	15	12	8.3	
9	14	55	32	135	94	80	84	72	71	15	9.6	19	
10	14	60 #	39	147	86	83	83	71	66	15	9.0	8.1	II "
11	15	40	55	194	87	78	85	73	65	14	9.3	8.4	1
12	12	38	30	138	98	73	76	74	58	15	13	7.6	13
13	13	31	22	118	113	70	78	70	54	15	13	8.0	1
14	16	28	22	108	109	67	124	94	73 *	13	13	8.1	1.
15	19	25	24	104	104	67	494 E	106	71	13	12	7.4	1.
	-						_						١.
16	19	25	20	101	99	66	235	122	54	32	12	8.0	
17	20	25	17	98	98	64	156	126	69	70	13	8.5	
18	19	24	17	102	98	60 *	219	110	73	38	18	9.2	
19	19	24	27	111	96 *	60	252	110	57	21	16	9.8	2
20	21	22	74	117	95	75	341 *	106	44	17	15	10	1
21	24	22	2720 E	112	96	76	305 E	133	41	15	16	10	2
22	26	25	5420 E	118	94	81	233 E	109	39	14	15	9.4	2
23	27	25	1960 E	364 E	92	80	184 E	87	43	14	14	9.6	2
24	29	28	1190 E	233	90	79	176 E	79	51	12	13	8.7	2
25	30	23	616 E	167	93	76	168 E	75	48	12	14	8.3	2
26		18	441 E	152	91	71	160 E	76	53	12	15	8.5	2
27	31		277	138		70		82	23	10	14	8.6	2
28	35 38	16 17	192	129	140 101	63	173 E 184 E	97	42 35	9.9	13	8.4	2
29			151	130	101	52	228	109	32	10	12	9.2	2
30	42 43	16 24	127	138		49	209	115	25	10	11	8.4	3
31	43	24	107	136		50	209	110	"	9.6	111	0.4	3
													ME
MEAN	21.0	34.3	449	161	103	73.2	166	98 • 4	60.0	18.2	12.9	9.4	M
MAX.	43.0	78.0	5420 E	568 E	140	94 • 0	494 E	175	90.0	70.0	18.0	19.0	
MIN.	8.2	16.0	17.0	92.0	87.0	49.0	72.0	54.0	25.0	9.6	9.0	7.4	M AC
AC. FT.	1294	2039	27600	9909	5722	4502	9854	6048	3570	1122	795	558	

WATER YEAR SUMMARY

E - ESTIMATED

NR - NO RECORD

DISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
101	9600 E	8.86	12	22	0510
				L	

	MINIM	J M		
DISCHARGE	GAGE HT.	MO.	DAY	TIME
2 • 8	1.79	5	5	2240
				سا

	TOTAL	7
Г	ACRE FEET	ı
	73010	,

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD (F RECORD	DATUM OF GAGE			
LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	0	OISCHARGE	GAGE HEIGHT	PÉRIOD		Z ERO ON	REF.
	EONGITUDE	M.D.8.&M.	CFS	GAGE HT.	DATE	OBCHARGE	ONLY	FROM	TO	GAGE	DATUM
41 28 20	122 26 18	SE20 42N 5W	9600 E	8.86	12/22/64	MAR 61-DATE	MAR 61-DATE	1961		0.00	LOCAL

Station located on downstream side of Edgewood Road bridge, 1.2 miles north of Edgewood. Tributary to Dwinnell Reservoir. Stage-discharge relationship at times affected by ice.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME F21300 LITTLE SHASTA RIVER NEAR MONTAGUE 1965

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	4.0	5 • 2	39	44 E	37 €	22 E	29 E	56 E	25	13	7.3	5.3	1
2	3.8	6.7	35	41 E	35 E	21 E	48 E	53 €	23	12	7.1	5.4	2
3	4.0	6.1	24	40 E	34 E	20 E	75 E	51 E	23	11	6.7	5.4	3
4	4.2	6.1	17	44 E	33 E	19 E	87 E	50 E	22	11	6.3	5 • 2	4
5	4.2	5.7	16	89 E	32 E	19 E	99 E	49 #	21	10	6 • 3	5.4	5
6	4.2	5.8	14	108 E	31 E	19 E	97 E	47 E	21	10	5.5*	5.4	6
7	4.2	6.0	15	65 E	31 E	19 E	88 E	44 E	20	9.9	5.4	4.9	7
8	4.0	8.0	55 *	55 E	30 E	19 E	76 E	42 E	19	9.6	5.2	4.8	8
9	3.8	12	67	52 E	29 E	18 E	76 E	38 E	19	9.7*	5 • 2	5 • 2	9
10	3.8	8.8	111	56 E	29 E	18 E	84 E	36 E	18	9.5	5 • 2	4.8	10
11	4.0	8.3	94	122 E	28 E	18 E	89 E	35 E	17	9.7	6.9	4.5	11
12	4.3	8.5	39	85 E	27 E	16 E	84 E	34 E	17	9.4	7.8	4.6	12
13	4 • 2	8.8	31	56 E	26 E	18 E	76 E	33 E	17	9 • 2	6.2	4 • 4	13
14	4.5	7.8	30	52 E	26 E	19 E	72 E	32 E	21	8.9	5.6	4.3	14
15	4 • 4	13	29	50 E	25 E	18 E	74 E	32 E	19	8.7	5.3	4 . 4	15
16	4.5	11	25	48 E	25 E	16 E	86 E	32 E	17	10	5.5	4.4	16
17	4.5	9.9	26	45 E	24 E	14 E	100 E	31 E	24	ii	5.6	5.2	17
18	4.3	10	37	43 E	24 E	13 E	102 E	31 E	19 *	9.4	8.6	4.6	18
19	4.3	10	28	42 E	24 E	13 E	103 E	31 E 30 E	16	8.9	9 • 1	5.0	19
20	4.5	11	23	41 E	23 E	12 E	102 E	30 E	14	8.5	8.0	5.2	20
21	4.5	12	416	41 E	23 E	12 E	99 E	50 €	14	8.6	6.4	5.0	21
22	4.7	12	794	42 E	23 E	11 E	91 E	30 E	14	8 • 1	14	4.8	22
23	4 . 5	13	355	46 E	22 E	11 E	85 E 77 E	30 E	12	8.1	15	4.6	23
24	4 • 6	16	251 E	56 E	22 E	10 E	77 E	30 E	13	7.6	7.5	5.2	24
25	4.8	23	150 E	52 E	22 E	10 E	74 E	30 E	12	745	8•6	4.8	25
26	4.6	18	118 E	46 E	22 E	9.6E	70 E	29 E	13	7.8	6.8	4.8	26
27	4.9	15	109 E	41 E	23 E	9.3E	67 E	28 #	12	7.8	6.0	4.8	27
28	4 . 8*	17	81 E	38 E	24 E	9.0E	64 E	27	12	7.4	6.0	4.8	28
29	5.2	20	66 E	39 E		8.7E	61 E	27	12	7.3	5 . 8	5.1	29
30	5.2	22	56 E	42 E		14 E	58 E	26	13	7.3	5.7	4.6*	
31	5 • 3		49 #	39 E		21 E		26		7.3	5•4		31
MEAN	4.4	11.2	103	53.5	26.9	15.4	79.8	35.5	17.3	9.2	7.0	4.9	MEA
MAX.	5.3	23.0	794	122 E	37.0E	22.0E	103 E	56.0E	25.0	13.0	15.0	5.4	MAX
MIN.	3 . 8	5 • 2	14.0	38.0E	22.0E	8.7E	29.0E	26.0	12.0	7.3	5 • 2	4.3	MIN
AC. FT.	271	668	6347	3293	1496	949	4746	2180	1029	564	428	291	AC.F

WATER YEAR SUMMARY

E - ESTIMATEO
NR - NO RECORO
- DISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY
- E AND *

MEAN		MAXIMU	J M				MINIM	J.M.		
CHARGE	DISCHARGE	GAGE HT.	MO.	OAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
30.8	5910	1066	12	22		3.8	1.62	10	2	

1	TOTAL
Г	ACRE FEET
	22260

<u></u>	LOCATIO	И	MA	XIMUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITODE	LONGITUDE	M.D.8.&M.	CFS GAGE NT.		DATE	DISCHARGE	ONLY	FROM	то	ON GAGE	DATUM
41 45 11	122 17 44	NW15 45N 4W	5910 E	10.66	12/22/64	28-NOV 51 8 APR 52-APR 55 SEP 56-DATE	28-NOV 51 8 APR 52-APR 55	1956 1965	1964	0.00	LOCAL

Station located south of Ball Mountain Road, 12 miles northeast of Montague, 16 miles southwest of Macdoel. Stage-discharge relationship at times affected by ice. Drainage area is 48.2 square miles.

8 - Irrigation season only

Station relocated upstream 1/4 mile 5/27/65.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1965	F25620	ETNA CREEK NEAR ETNA

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.0*	3.4	190	NR	NR	NR	NR	NR	NR	NR	NR	NR	1
2	1.5	5.8	128	NR	NR	NR	NR	NR	NR	NR	NR	NR	2
3	1.4	3.7	67	NP	NR	NR	NR	NR	NR	NR	NR	NR	3
ă	1.5	3.1	44	NR	NR	NR	NR	NR	NR	NR	NR	NR	4
5	1.4	3 • 3	33	NR	NR	NR	NR	NR	NR	NR	NR	NR	5
6	1.5	3.5	27	NR	NR	NR	NR	NR	NR	NR	NR	NR	6
7	1.6	3.2	24	NR	NR	NR	NR	NR	NR	NR	NR	NR	7
g l	1.0	3 • 8	42	NR	NR	NR	NR	NR	NR	NR	NR	NR	8
9	1.8	6.1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	9
10	1.7	6.5*	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	10
11	1.6	6.5	NR	NR	N.R.	NR	NR	NR	NR	NR	NR	NR	11
12	1.7	8.1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	12
13	1.7	5.3	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	12
14	1.9	4.5	NR	NR	NR	NR	NR	NP	NR	NR	NR	NR	14
15	2.0	4.2	NR	NR	NP	NR	NR	NR	NR	NR	NR	NR	15
16	2 • 1	4.4	NR	NR	NR	NR	NR	NR	NR	NR	NP	NR	16
17	2.1	4.4	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	17
18	2.1	4.4	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	18
19	2.0	4.4	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	19
20	1.9	4.4	NR	NP	NR	NR	NR	NR	NR	NR	No	NR	20
21	2.0	4.6	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	21
22	2.0	4.8	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	22
23	2 • 1	5.4	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	22
24	1.9	2.9	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	24
25	2.1	47	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	25
26	2.4	18	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	26
27	2.6	13	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	27
28	3.0	26	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	28
29	4.0	38	NR	NR		NR	NR	NR	NR	NR	NR	NR	29
30	3.7	90	NR	NR		NR	NR	NR	NR	NR	NR	NR	30
31	3.2		NR	NR		NR		NR		NR	NR		31
MEAN	2 • 1	12.3	NR	NR	NR	NR	NR	NR	NR	NR	NP	NR	MEAN
MAX.	4.0	90.0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	MAX
MIN.	1.4	3 • 1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	MIN.
AC. FT.		732	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	AC.FT.

WATER YEAR SUMMARY

E - ESTIMATEO

NR - NO RECORD

- OISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	J M			MINIM	U M		
ISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
NR	NR				NR			1	
				<i>)</i>					/

TO	IAI	_
	176	
ACRE	FEET	
	NR	
	ACRE	ACRE FEET NR

	LOCATION			XIMUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUDE LONGITUDE		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
41 25 53	122 54 57	NE6 41N 9W	4040 E	10.87	2/8/60	SEP 50-JUNE 55	SEP 50-JUN 55	1957	1965	0.00	LOCAL

Station located south of Sawyers Bar-Etna Highway, 2.1 miles southwest of Etna. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Flow influenced by upstream diversion dam of Town of Etna. Drainage area is 20.1 square miles.

Station destroyea Dec. 1964.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME F25420 MOFFETT CREEK NEAR FORT JONES 1965

DAY	ост.	NOV.	DEC.	JAN.	FE8.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.3*	0.7	1.7	78	153 E	43	30	38	12	5.9	1.6	5.7	1
2	0.3	0.9	2.2	74	136	40	29	38	11	6.3	1.4	8.1	2
3	0.3	0.8	1.7	70	122	40 #	27	38	9.7	6.0	1.5	5.7	3
4	0.3	0.9	1.5	64	110 *	38	26	36	8.8	6.0	1.5	4.6	4
5	0.3	0.8	1.4	100	103	36	29	35	8.6	5.6	1.3	4.1	5
6	0.3	0.8	1.3	131	95	35	31	33	9.0	4.4	1.1*	3.9	6
7	0.3	0.8	1.3	109 *	87	34	30	31	13	4.2	1.1	3.5	7
8	0.4	0.9	1.4	96	83	33	29	30	10	4.0	1.7	2.8	8
9	0.5	1.4	1 • 4	88	76	32	29	29	9.5	4.0*	1.6	2.6	9
10	0.6	1.6	1.6	87	70	31	30	27	8.6	4.0	1.1	2 • 2	10
11	0.5	1.6	1.8	180 E	67	31	30	24	7.9	3.7	1.2	2.2	31
12	0.4	1.7	1.7	192 E	63	31	29	23	7.0	3.5	1.3	2.1	12
13	0.5	1.5	1.7	173 E	62	30	29	24	7.4	3.3	1.1	2.0	13
14	0.4	1.4	1.7	158 E	59	29	30	24	9.3*	3.6	1.0	1.9	14
15	0.3	1.5	1.8	145	56	29	32	22	11	3.6	1.0	1.7*	15
16	0.5	1.5	1.8	145	53	28	39	20	11	4.2	0.9	1.6	16
17	0.4	1.4	1.7	141	51	28	40	20	10	3.7	1.2	1.8	17
18	0.4	1.5	1.7	139	51	27	46	20	7.9	3 • 6	1.9	1.7	18
19	0.4	1.5	2.0	150 E	50	26	57	19	7.4	3.7	2.1	1.6	19
20	0.4	1.5	2.3	159 E	48	26	65 *	20 *	6.7	3.2	2 • 3	1.6	20
21	0.5	1.4	31	153 E	47	25	65	22	6.3	3.0	2.9	1.4	21
22	0.5	1.2	455 E	141	47	25	62	22	6.1	2.9	3 • 6	1.4	22
23	0.4	1.1*	487 E	206 E	45	25	58	20	5.7	2.8	5+2	1.4	23
24	0.5	1.0	312 E	276 E	43	25	55	18	5.5	2.5	5.5	1.3	24
25	0.5	1.0	238 E	217 E	43	25	52	16	6.3	2.6	4.5	1.3	25
26	0.4	1.0	225 E	176 E	42	24	51	15	6.8	2.5	4.2	1.2	26
27	0.4	0.9	218 E	151 E	52	23	48	14	6.8	2.4	4.0	1.4	27
26	0.5	1.0	164 E	136	46	23	45	13	6.3	2 • 3	3 • 6	1.4	28
29	0.6	1.0	126	135		23	42	13	5.3	2.2	3 • 4	1.1	29
30	0.6	1.5	107	159 E		23	39	13	5.3	2.1	2 • 8	1.1	30
31	0.5		86	167 E		23		12		2.0	2.5		31
MEAN	4.0		00.0	343	70.0	20.4	40.3	22 5		2.7	2.3		MEA
MAX.	0.4	1.2	80.2 487 E	142 276 E	70.0	29 • 4	40.1 65.0	23.5 38.0	8.2 13.0	3.7	2 • 3 5 • 5	2.5	MAX
MIN.	0.6	1.7 0.7	1.3	276 E 64.0	153 E 42.0	43.0				6.3		8.1	MIN
AC. FT.	26	71	4928	8719	3888	23.0 1807	26 • 0 2388	12.0 1446	5 ₆ 3 488	2•0 226	0•9 139	1.1	AC.F

WATER YEAR SUMMARY

E - ESTIMATED

NR - NO RECORO

- DISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	M		=
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
33.5	680	5•59	12	23	

\	$\overline{}$	MINIMUM												
٦	DISCHARGE	GAGE HT.	MO.	DAY	TIME									
	0.3	2.22	10	1	,									

TOTAL
ACRE FEET
24270

	LOCATION	1	MAXIMUM DISCHARGE PER				F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD		0	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
LATITOOL	LONGITUDE	M.O. 8.&M.	CFS	GAGE NT.	DATE	JOSH AND E	OHLY	FROM	TO	GAGE	DATUM
41 38 02	122 44 50	NESA 777N 8M	680	5.59	12/23/64	OCT 52-OCT 54 JUN 57-DATE	OCT 52-OCT 54 JUN 57-DATE	1957		0.00	LOCAL

Station located 180 feet above Old Fort Jone-Yreka Highway bridge, 5.1 miles northeast of Fort Jones. Tributary to Scott River. Stage-discharge relationship at times affected by ice, upstream diversion with approximate flow of one C.F.S. May thru October. Drainage area is 69.8 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME F41540 WEAVER CREEK NEAR DOUGLAS CITY 1965

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.4	5.9	194	132	169	52	38	79	35	11	3.5	2.4	1
2	0.5	10	159	122		52	38	73	31 *	9.9	2.7	2.2	2
3	0.4	7.1	81	116	137 E	50	36	68	29	9.1	2.7	2.0	3
4	0.4	5.8	45	98	137 E	49	37	63	29	8.7	2.4	1.9	4
5	0.5	3.2	29	748 E	134 #	48	38	59	29	8.3	2+3	1.9	5
6	0.6	5.1	21	1010 E	123	48	37	57	27	8.0	2•2	1.6	6
7	0.7	4.9	17	681 E	112	46	38	53	26	6.6	2.1	1.9	7
8	0.7	7.4	28	414 E	106	45	44	52	24	6 • 2	1.6	1.8	8
9	0.8	16	53	310	98	44	45	51	23	6.0	1.7	1.9	9
10	0.6	33	169	378 E	92	42	44	51	21	6.1	1.9	1.7	10
11	0.7	43	153	707 E	87	42	42	50	20	6.0	2.9	1.7	11
12	0.7	48	54	539 E	83	42	41	52	20	6.0	4+5	1.5	12
13	1.0*	27	27	378	80	41	43	52	20	5.4	3.3	1.6	13
14	0.9	16	18	311	76	39	43	51	23	5.6	2.5	1.5	14
15	0.8	12	16	336	72	38	63	50	22	5.4*	2•3	1.4	15
16	1.2	10	9.8	377	70	37	79	52	20	4+7	2.0*	1.3	16
17	1.3	9.9	6.9	369	67 *	37	69	52	19	4.2	2.0	1.40	17
18	1.5	9.3	5.6	411 E	66	36	274 E	49	18	4.2	6.6	1.5	18
19	1.7	8.6*	31	498 E	64	36	351 E	47	16	4.2	5.1	1.6	20
20	1.9	8 • 2	94	537 E	63	37	216	46	15	4.3	4.0	1.7	20
21	1.9	9.0	1620 E	488 E	61	36	186	50	15	4+5	3.7	1.3	21
22	1.8	11	2570 E	377	62	35	140 *	45	14	4.1	3.6	1.4	22
23	1.8	10	1620 E	914 E	58	35 *	118	40	13	3.9	3.6	1.3	23
24	2.0	38	1470 E	588 E	55	34	106	40	13	3.4	4.1	1.2	24
25	2 • 3	98	1340 E	354	54	34	99	38	13	3.3	4.6	1.3	25
26	2.7	41	834 E	269	56	39	98	37	13	3.4	4.1	1.5	26
27	3 • 6	36	922 E	226	72	40	96	37	13	3.4	3.9	1.4	27
28	5.6	218	767 E	197	56	36	99	38	12	3.5	3.2	1.7	28
29	8.5	116	410 E	184		36	94	38	10	3.3	2 • 8	1.9	29
30	6.1	135	249	184		40	85	37	11	3.2	2.5	1.8	30
31	4.3		175	161		38		37		3.4	2+6		
MEAN	1.9	33.5	425	401	87.6	40.8	91.3	49.8	19.8	5.5	3.1	1.6	MEAN
MAX.	8 • 5	218	2570 E	1010 E	169	52.0	351 E	79.0	35.0	11.0	6.6	2.4	
MIN.	0.4	4.9	5.6	98.0	54.0	34.0	36.0	37.0	10.0	3.2	1.7	1.2	MIN. AC.FT.
AC. FT.	115	1992	26160	24660	4863	2507	5433_	3062	1178	336	193_	98	Tr.FI

WATER YEAR SUMMARY

E - ESTIMATED

NR - NO RECORD

DISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	J M		_		MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	
97.5	3980	12.72	12	22		0.4	5.60	10	1	

TOTAL ACRE FEET 70600

LOCATION MAXIMUM DISCHAR			IARGE	PERIOD	OF RECORD		DATU	M OF GAGE			
LATITUDE LONGITUDE		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
	2011017002	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
40 40 13	122 56 33	SE36 33N 10W	3980 E	12.72	12/22/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 2.0 mile below State Highway 299 bridge, 1.2 miles north of Douglas City, 4.2 miles south of Weaverville. Tributary to Trinity River. Drainage area is 48.4 square miles.

Revisions: Maximum Discharge:	Water Year 1959 1960 1961 1962 1963 1964	Gage Height 9.45 10.37 9.68 9.07 11.40 11.32	Discharge in CFS 1750 2300 1900 1550 2920 2860
Daily Mean:	Date 1/31/61 2/13/62 1/31/63 1/20/64	Gage Height 8.15 7.80 8.67 8.92	Discharge in CFS 992 760 1300 1060

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1965 F41510 BROWNS CREEK NEAR DOUGLAS CITY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	3.0	34	181	269	376	86	54	131	48	22	12	8.9	1
2	3.0	60	180	258	329	83	58	124	46 *	21	12	9.0*	2
3	3.3	30	139	231	288	81	56	119	44	20 E	12	9.3	3
4	3.7	19	106	197	255	78	56	112	41	20 E	ii	9.1	4
5	2.9	16	88	516	244	80	56	107	41	19 E	ii	8 • 4	5
6	3.6	14	73	704	216	81	58	103	41	19 E	9.5	8.0	6
7	3.6	13	62	595	186	79	56	98	40	18 E	8.6	7.8	7
8	3.3	16	57	446	175	76	73	93	39	18 E	9.4	8.4	8
9	3.6	35	54	405	160	74	77	89	38	17 E	9 • 4	8.3	9
10	4.0	81	64	376	146	73	77	87	36	17 E	8.7	7.3	10
11	4.4	68	88	423	137	73	75	83	34	17 E	11	7.3	11
12	4.0	101	78	421	131	71	83	81	32	16 E	16	7.2*	12
13	3.6*	78	70	405	126	68	105	79	34	16 E	13	7.3	13
14	3.4	53	63	385	123	67	208	76	35	15 E	11	7.9	14
15	4.1	39	61	408	116	65	543	73	35	15 E	10	7.9	15
16	4+1	32	54	439	116	63	711	72	33	14 E	11	7.4	16
17	4.6	27	48	449	111 *	63	468	69	33	14 E	11	7.2	
18	4.5	23	45	484	108	63	612	67	33	13 E	16	7.6	18
19	4.6	21 *	67	545	105	64	733	65	31	12 #	16	7.9	20
20	4.6	20	131	548	102	58	605	65	31	12	13	7.6	120
21	4.6	22	1180	508	101	50	495	69	28	12	12	7.7	21
22	4.6	27	2840	456	99	48	397 *	65	27	13	13	7.6	22
23	4.9	25	2010	741	95	50 #	343	63	27	12	13	6.5	23
24	5.1	37	1030	966	92	52	285	60	26	12	12	6.8	24
25	5.5	79	759	717	88	50	243	58	25	12	13	7.7	25
26	5.9	77	866	556	86	52	212	55	28	11	12	6.0	26
27	6.3	65	841	466	111	57	189	54	25	11	12	8 • 2	27
28	14	104	640 *	422	91	51	175	51	24	11	11	8.8	28
29	34	119	500	419		49	156	50	23	11	8+5	8.9	29
30	22	129	409	448		50	141	50	23	11	9+1	8 • 2	30
31	14		325	429		51		49		11	9•5		-
MEAN	6.4	48.6	423	472	154	64.7	247	78.0	33.4	14.9	11.6	7.9	MEAI
MAX.	34 • 0	129	2840	966	376	66.0	733	131	48.0	22.0	18.0	9.3	MIN
MIN.	2.9	13.0	45.0	197	86.0	48.0	54.0	49.0	23.0	11.0	8.5	6.5	AC.FI
AC. FT.	391	2904	26 000	29030	8567	3979	14680	4794	1985	916	712	472	

WATER YEAR SUMMARY

E - ESTIMATED

NR - NO RECORD

- OISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
130	3790	16.29	12	22	0950

	MINIM			$\overline{}$
DISCHARGE	GAGE HT.	MO.	DAY	TIME
2•4	7.78	10	5	0820

TOTAL ACRE FEET 94430

	LOCATION	N	МА	XIMUM DISCH	IARGE	PERIOD C	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
LATITODE	ECHOTTODE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
40 38 35	122 58 46	SE10 32N 10W	3950 E	16.60	2/18/58	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located at private bridge, 2.1 miles west of Douglas City. Tributary to Trinity River. Stage-discharge relationship at times affected by ice. Drainage area is 71.4 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1965	F42100	NORTH FORK TRINITY RIVER AT HELENA

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	18	54	1520	700 E	773	398	268	743	326	135	57	34	1
2	16	153	1130	640 E	688	380	264	663	295 *	153	58	34	2
3	18	94	667	580 E	623	361	256	555	334	155	56	32	a
4	17	67	402	570 E	587	358	253	475	374	158	53	32	1 4 1
5	16	56	319	630 E	609	354	257	425	376	145	50	32	5
6	16	50	296	700 E	598	352	253	384 #	308	158	49	31	6 7
7	17	45	291 *	600 E	550	348	243	368	308	145	49	30	l á l
8	17	54	376	530 E	508	345	232	352	291	144	48	30	0
9	17	143 *	636	490 E	483	343	219	357	262	133	48	30	10
10	17	178	2400	430 E	465	345	226	369	288	115	45	29	1.0
11	17	181	2010	530 E	451	352	218	393	303	105	47	28 4	11
12	16	267	856	520 E	445	353 *	215	461	280	101	60	28	12
13	16	156	515	500 E	422	341	223 *	491	228	98 97	52 46	28 27	14
14	17	111	399	520 E	407	334	234	476	224 198	98 *	43	27	15
15	19	94	382	580 E	420	328	328	457	198	98 *	4,2	21	
16	19	89	329	660 E	436	328	488	480	177 171	100 101	41 *	27 25	16
17	19	87	290	720 E	426	329	429	498		99	47	27	18
18	20	84	261	770 E	450	317	1140	419 409	181 197	90	48	27	19
19	20	83 #	273	800 E	466	307 302	2940 2110	394	217	81	43	27	20
20	19	89	519	780 E	485	302	2110	394					
21	19	95	7210	700 E	480	301	1650	358	230	77	42	27	21
22	19	110	19000 E	551	477	309	1280 #	313	237	75	41	26	22
23	19	120	10000 E	1290	457	310 *	1110	291	233	71	40	26 4	
24	18	372	6000 E	2000	436	308	1050	274	218	67	40	26	24
25	19	375	3500 E	1120	405	299	1020	273	187	66	47	25	25
26	20 *	110	3000 E	687	381	307	1060	296	155	66	44	25	26
27	22	76	2000 E	501	495	289	1130	339	141	65	42	25	28
28	47	341	1550 E	435	427	278	1140	390	139	63	39	25	29
29	158	453	1050 E	481		272	993	425	137	60	38	25	
30	83	622	890 E	679		272	864	402	145	56	35	25 1	30
31	53		780 E	795		271		375		55	35		
MEAN	26.8	160	2221	693	495	326	736	416	239	100	45.9	28.0	MEAN
MAX.	158	622	19000 E	2000	773	398	2940	743	376	158	60-0	34.0	MIN.
MIN.	16.0	45.0	261	430 E	381	271	215	273	137	55.0	35.0	25.0	AC.FT.
AC. FT.	1646	9539	136600	42620	27480	20020	43820	25600	14200	6173	2820	1668	

WATER YEAR SUMMARY

E - ESTIMATED

NR - HO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION
OF HO FLOW MADE THIS DAY

- E AND *

MEAN		MAXIMU	J M_		MINIMUM					
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
458	35800	27.93	12	22		16	6.89	10	5	

	TOTAL	
	ACRE FEET	
l	332100	

	LOCATIO	4	МА	XIMUM DISCH	ARGE	PERIOD C	DATUM OF GAGE				
	LOUGITUDE	1/4 SEC. T. & R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITUDE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	PIGCITARGE	OHLY	FROM	то	GAGE	DATUM
40 46 56	123 07 39	SW21 34N 11W	35800	27.93	12/22/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 1.0 mile above mouth, 0.6 mile north of Helena. Stage-diacharge relationship at times affected by ice. Drainage area is 151 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1965	F44500	BIG CREEK NEAR HAYFORK

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.2	6.6	109	169	191	50 *	39 E	39	14	3.0	0.2E	0.1E	1
2	0.3	14	101	162	173	60	36 E	38	13 +	1.9	0.2E	0.1E	2
3	0.4	7.9	62	155	162	59	38 E	34	12	2.4	0 • 2E	0.1E	3
4	0.2	7. Ž	42	145	153	58	36 E	33	12	1.8	0.2E	0.1E	4
5	0.3	6.6	32	221	160 *	59	37 E	32	12	1.6	0.2E	0.8E	5
6	0.3	6.6	27	303	151	56	37 E	40 #	12	3.5	0 • 2E	0.6E	6
7	0.3	5 • 6	24	218	138	56	36 E	38	12	4.4	0 • 2E	0.1E	7
8	0.4	8.2	24	175	128	54	36 E	37	12	4.4	0+2E	0.6E	8
9	0.4	12	28	166	120	55	36 E	35	12	3.9	0.2E	0.1E	9
10	0.4	14	40	171	112	53	35 E	32	9.5	4.4	0+2E	0.5E	10
11	0.2	13	61	216	90	53	35 E	28	9.1	4.4	0.3E	0.1E	11
12	0.3	15	44	214	81	52	34 E	24	9.1	3.9	0.7E	1.2E	12
13	0.3	12	35	191	65	50	34 #	21	8.2	3.7	0 • 3E	0.15	13
14	0.3	11	31	184	61	50	35	20	8 • 6	1.9	0.6E	0.7E	14
15	0.5	9.1	29	212	58	46	72	18	8.6	2.0*	0.2E	0.4E	15
16	0.3	8.6	26	245	54	46	101	18	7.9	0.5E	0.3E	0.6E	16
17	0.6	9.5	24	251	53	46	78	19	5.9	0.2E	0.1E	0.3E	17
18	0 • 4	9.1	23	282	52	44	131	18	6.9	0.2E	1.8E	1.1E	18
19	0.5	9.1*	30	330	52	44	184	19	4.9	0.2E	1.8E	3 • QE	19
20	0.0	8.6	50	322	52	44 E	138	17	3.0	0 • 2E	1.5E	3.9E	20
21	0.0	9.5	942 E	287	52	43 E	110	17	2 • 7	0 • 2E	1.6E	1.5E	21
22	0.0	9.9	1130 E	243	50	43 E	88	17	3.0	0.2E	1.2E	0.2E	22
23	0.0	9.9	898 E	369 E	46	42 E	75	16	2 • 4	0 • 2E	1.4E	0.3E	23
24	0.1	15	636 E	451 E	44	42 E	66	15	2.0	0.2E	0.9E	0.3E	24
25	0.1	32	537 E	303	42	42 E	59	15	3 • 2	0+4E	0•6E	0 • 3E	25
26	0.4	24	543 E	227	40	41 E	55	14	4.7	0 • 2E	0.9E	0.3E	26
27	0.4	20	482 E	193	48	41 E	50	14	1.9	0 • 2 E	0.4E	0.4E	27
28	2 • 2	48	368	175	41	40 E	46	14	2.0	0 • 2E	0+1E	0.6E	28
29	5.6	50	278	175		40 E	44	15	1.9	0 • 2E	0.4E	0.5E	29
30	4.9	56	223	204		40 E	40	13	2 • 7	0+2E	0 • 4E	0-4E	30
31	3.9		193	210		39 E		14		0.2E	0 • 1E		31
MEAN	0.8	15.6	215	231	88.2	46.1	61.5	23.4	7.3	1.6	0.6	0.6	MEAN
MAX.	5.6	56.0	1130 E	451 E	191	60.0	184	40.0	14.0	4.4	1.8E	3.9E	MAX.
MIN.	0.0	9.6	23.0	145	40.0	39.0E	34.0E	13.0	1.9	0.2E	0.1E	0.1E	MIN. AC.FT.
AC. FT.	48	928	13230	14220	4897	2955	3660	1436	435	101	35	38	AC.FL

WATER YEAR SUMMARY

E - ESTIMATED

NR - NO RECORD

- DISCHARGE MEASUREMENT OR OBSERVATION
OF NO FLOW MADE THIS DAY

- E AND •

DISCHARGE DISCHARGE GAGE HT. MO. DAY TIME DISCHARGE GAGE HT. M	SCHARGE DI	CHARGE	GAGE HT.	MO	0.0	TINAT					
57.9 1 3630 13.75 130 00 0700 00 5 11 13				,,,o.	DAT	IIME	DISCHARGE	GAGE HI.	MO.	DAY	TIME
7 7 1010 11.77 12 22 0700 3.41 1	57.8	1610	11.75	12	22	0700	0.00	5.41	10	20	

1	TOTAL	
Γ	ACRE FEET	
l	41,980	

LOCATION MAXIMUM DISCHARGE				PERIOD (DATUM OF GAGE						
LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & R. OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.		
LATITODE	LONGITODE	M.D. 8.&M.	CFS	GAGE NT.	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
40 33 11	123 08 35	SE7 3LN 11W	1610 E	11.75	12/22/64	FEB 57-DATE	FEB 57-DATE	1957		0.00	LOCAL

Station located 30 feet above Hayfork-Douglas City Highway bridge, 2 miles east of Hayfork. Tributary to South Fork Trinity River via Hayfork Creek. Flow influenced by upstream diversion dam of community of Hayfork. Drainage area is 27.1 square miles.

TABLE B-2
STREAMFLOW MEASUREMENTS AT MISCELLANEOUS SITES

			Measur	ements
Stream	Tributary	Location	Date	Discharge
Eel River, East Branch South Fork, near Benbow Resort	South Fork Eel River	SW ¹ , SE ¹ , Sec. 32, T4S, R4E, HB&M	7-16-65 7-24-65 7-26-65 8- 4-65 8-10-65 8-11-65 9- 1-65 9-14-65	10.6 9.3 8.7 E 5.8 6.7 E 7.2 E 6.0 6.3 5.1
Eel River, South Fork, at French's Resort	Eel River	SE_{4}^{1} , NW_{4}^{1} , Sec. 24, T5S, R3E, HB&M	8-18-65	52.8 *
Hollow Tree Creek near Leggett	South Fork Eel River	$SW_{4}^{\frac{1}{4}}$, $NE_{4}^{\frac{1}{4}}$, Sec. 15, T23N, R17W, MDB&M	8-18-65 8-27-65 9-28-65	3.2 3.0 1.9
Indian Creek near Moody	South Fork Eel River	NE_{4}^{1} , NW_{4}^{1} , Sec. 4, T24N, R18W, MDB&M	9- 1-65 9-17-65 9-30-65	2.3 1.7 1.6
Legget Creek near Redway Drainage area =3.8 sq. mi.	South Fork Eel River	NE_{4}^{1} , SW_{4}^{1} , Sec. 3^{14} T3S, R3E, HB&M	8-20-65	0.5
Redwood Creek near Redway Drainage area = 25.5 sq. mi.	South Fork Eel River	SW_{4}^{1} , SW_{4}^{1} , Sec. 10, T4S, R3E, HB&M	7-26-65 7-28-65 8-10-65 8-17-65 8-24-65 8-31-65 8-14-65	2.0 E 1.8 0.9 0.9 0.6 0.5 0.3
Salmon Creek near Miranda	South Fork Eel River	SE ¹ / ₄ , SE ¹ / ₄ , Sec. 5, T3S, R3E, HB&M	7-23-65 7-28-65 8-10-65 8-17-65 8-31-65 9- 7-65 9-14-65	3.0 2.6 2.1 2.2 1.6 1.5 1.0

E - Estimate

^{* -} Average of two measurements

APPENDIX C GROUND WATER MEASUREMENTS

GROUND WATER MEASUREMENTS

All studies of ground water problems, and plans for the solution of these problems, should be based upon accurate records of ground water elevations obtained over a period of many years. This is true whether the problem is the determination of the safe yield of a ground water basin, the operation of a basin for cyclic storage in conjunction with surface water supplies, or the control of sea water intrusion.

The Department began the collection of ground water data in 1930, in conjunction with special investigations of water resources of specific areas, and has gradually developed a continuing program of hydrologic data collection. Through cooperative activities with the federal and local agencies, coordinated and augmented by the Department, the program of ground water level measurements has gradually been expanded to adequately cover the major ground water basins.

Within the North Coastal Area, the Department cooperated with the U. S. Geological Survey during the period July 1, 1964 through June 30, 1965 in the systematic observation of ground water levels in the nine major water basins. The field measurements were made by the U. S. Geological Survey; whereas the Department reviewed, processed, and edited the data.

Wells are selected for measurement on the basis of geographical density, length of record, frequency of measurement, conformity to water level fluctuations in the basin, and availability of a well log, mineral analyses, and production records.

The depth to water in most of the wells is normally a direct measurement made with a tape. However, in some of the deeper wells measurements are made with an air line and gage or an electric sounder.

A summary of the average seasonal change in water levels in the nine ground water basins reported in this appendix are given in Table C-1, "Average Ground Water Level Changes in North Coastal Area Basins". The ground water level measurements collected from these North Coastal Area basins during the period July 1, 1964 through June 30, 1965 are included in Table C-2, "Ground Water Levels at Wells".

Coding Systems

Region and Basin Designations. All data presented in this appendix are located within Region 1, a geographic area defined in Section 13040 of the Water Code. The nine ground water basins measured in the program during 1964-65 are shown on Figure C-1.

A decimal system of the form 0-00.0 is used for basin numbering. The number to the left of the dash refers to the geographic region and the first two digits of the number on the right of the dash refer to the hydrographic unit, generally designated as a basin, valley, or area. These are followed by a decimal which shows the sub-basin, area, or sub-area within the basin, valley, or area. Two zeros following the decimal denotes that there is no sub-basin, area, or sub-area. An example is given below:

Well Numbering System. The well numbering system used in this report is based on the township, range, and section subdivision of the United States Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data is published or filed by the Department. In this report, the number of a well assigned in accordance with this system is referred to as the State Well Number.

Within the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	K	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, as well which has the number 16N/1W-2JlH would be in Township 16 North, Range 1 West, Section 2, Humboldt Base and Meridian, and would be further designated as the first well asigned a State Well Number in Tract J. In this report, well numbers are in reference to the Humboldt Base and Meridian (H) or the Mount Diablo Base and Meridian (M).

Agency Supplying Data. The code number assigned to the U.S. Geological Survey, the only measuring agency for the wells listed in this appendix, is 5000.

Reason for Questionable Measurement. If the water level measurement is of questionable reliability, the reason is indicated by the following code preceding the measurement:

Code	eason
2 Ne 3 Ca 2	ump operating earby pump operating asing leaking or wet umped recently ir or pressure gage measurement ther echarge operation at or near well il in casing aved or deepened

Reason for No Measurement. If no measurement was made at a well scheduled to be measured, the reason for not making the measurement is indicated by the following code:

Code	Reason
1	Pump operating
2	Pump house locked
3 4	Tape hung up
4	Cannot get tape into casing
5 6	Unable to locate well
6	Well has been destroyed
7	Special
8	Casing leaking or wet
9	Temporarily inaccessible
0	Measurement discontinued

TABLE C-1
AVERAGE GROUND WATER LEVEL CHANGES
IN NORTH COASTAL AREA BASINS
SPRING 1964 - SPRING 1965

Ground Water Bas		: Number : of Wells : Considered : in	: Average Ground : Water Level Change : in feet
Name :	Number	: Analysis	:
Smith River Plain	1-01.00	4	No change
Butte Valley	1-03.00	5	+5
Shasta Valley	1-04.00	6	+1
Scott River Valley	1-05.00	4	+8
Mad River Valley	1-08.00	2	No change
Eel River Valley	1-10.00	3	+2
Round Valley	1-11.00	5	+1
Laytonville Valley	1-12.00	3	+1
Little Lake Valley	1-13.00	3	No change

	AGENCY SUPPLYING DATA		, , , , , , , , , , , , , ,	2000 2000 2000 2000 2000 2000 2000 200	000	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
	WATER SURFACE ELEVATION IN FEET		15.4	23.1 28.2 23.1 20.2 23.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	1 % 10 %	421.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- 4227.7 + 4226.0 + 4226.0 + 4226.0 + 4233.8 + 4233.1 + 4233.1 + 4233.1 + 4227.1
	GROUNO SUR- FACE TO WATER SURFACE IN FEET		22.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	r Ĉ	4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	(1) (1,0% \\ 2,0% \\ 3,0% \\ 4,1\\ 1,0% \\ 1,0% \\ 1,\\ 1,0% \\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\ 1,\\
	DATE		7-15-64	9-16-64 10-14-64 11-18-64 12-16-64 1-00-65 2-17-65 3-17-65 4-15-65	6	8-7-10-04 9-17-04 10-15-04 11-19-04 11-19-04 1-18-05 1-18-05 1-16-05 1-16-05 6-17-05	7-16-64 8-21-64 9-17-64 10-15-64 11-19-64 12-17-64 12-18-65 1-18-65 1-16-65 6-17-65
7555	GROUND SURFACE ELEVATION IN FEET	1-01.00	38.0			4.242.4 4.242.4	1,256.2
רב אברט או א	STATE WELL NUMBER	SMITH RIVER PLAIN	18N/01W-26F01 H		BUTTE VALLEY 1-03.00	46N/Ole-ognol M	46N/02W-25R02 M
WAIER	AGENCY SUPPLYING DATA			7,000 7,000	2000	7000 7000 7000 7000 7000 7000 7000 700	2000 2000 2000 2000 2000 2000 2000 200
OOND	WATER SURFACE ELEVATION IN FEET			108.6 108.0 108.0 106.4 106.7 106.7 111.5 111.3	109.6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.8 - 1.44 - 1.8444 - 0.44 - 0
GRO	GROUND SUR- FACE TO WATER SURFACE	00.0		18.00 20.00 20.00 17.00	27.77	29.29.29.29.29.29.29.29.29.29.29.29.29.2	28.00 20.00 10.00
	DATE	MODERN COASTIAL, REGION 1-00.00		7-15-64 8-20-64 9-16-64 10-14-64 11-16-64 12-16-64 1-00-65 3-17-65	4-15-65 5-19-65 6-16-65	7-15-64 8-20-64 9-16-64 110-14-64 11-18-64 1-16-64 1-10-65 1-17-65	7-15-64 8-20-64 10-14-64 11-13-64 12-16-64 12-16-64 1-00-65 8-17-65 8-17-65 8-17-65
	GROUND SURFACE EL EVATION	APRACY HWGOW	00 10-1	127.0		O*84	31.0
	STATE WELL NUMBER		MT A TOT CONTINUES AT A TANA	SMITH RIVER PLAIN 16N/OIW-O2JOL H		16N/OIW-17KOl H	17v/otw-ozpot H

TABLE C-2 (Continued)

AGENCY SUPPLYING DATA		20000000000000000000000000000000000000	2000 000 000 000 000 000 000 000 000 00	2000 2000 2000 2000 2000 2000 2000 200
WATER SURFACE ELEVATION IN FEET		88888888888 5588888888 55888 5588888888	8886.5.66 8886.5.66 8886.5.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66 8886.6.66	2638.0 2647.0 2656.6 2660.8 2661.4
GROUND SUR. FACE TO WATER SURFACE IN FEET		ݥݒݭݖݕݦݖݖݦݦݷݭݭ ݷݞݸݞݾݾݖݨݭݥݨݽ		
DATE		7-16-64 9-17-64 10-17-64 11-19-64 12-17-64 12-17-64 12-17-64 1-21-65 3-18-65 4-16-65 6-17-65	7-16-64 8-21-64 9-17-64 10-15-64 11-19-64 12-17-64 1-12-65 1-18-65 1-16-65 6-17-65	7-16-6 8-21-64 9-17-64 10-15-64 11-19-64 1-13-65 8-18-65 1-16-65 1-16-65 1-16-65 1-16-65 1-16-65
GRDUND SURFACE ELEVATION IN FEET		2882°0	2835.0	2665.0
STATE WELL NUMBER	SHASTA VATIEY 1-04.00		42N/06W-10JO1 M	43N/06w-22A01 M
AGENCY SUPPLYING DATA		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		4221.3 4220.5 4220.5 4220.5 4225.2 4225.2 4225.2 4223.5 4223.5	1,222.7 1,222.0 1,222.0 1,221.0 1,221.0 1,225.	6225.6 6223.6 6223.6 6223.6 6223.6 6233.6 6236.5 6236.5 6236.9 6236.9
GROUND SUR. FACE TO WATER SURFACE IN FEET		4 6 6 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6	0111111 7.0.4.7.6.7.7.8888 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	81 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
DATE		7-16-64 8-21-64 9-17-64 10-15-64 11-19-64 12-17-	7-16-64 8-21-64 9-17-64 10-15-64 11-19-64 11-19-64 11-20-65 2-18-65 3-18-65 3-18-65 5-20-65 6-17-65	7-16-04 8-21-04 10-17-04 11-19-04 11-19-04 12-17-04 1-18-65 1-16-65 1-16-65 1-16-65 1-16-65 1-16-65
GROUND SURFACE ELEVATION IN FEET	8	^{1,} 233.7	4.233. ⁴	5*445.4
STATE WELL NUMBER	BUTTE VALLEY 1-03.00	м_14BO1 м	47x/олw-27вол м	48n/olw-26nol m

 	,			
AGENCY SUPPLYING DATA		800000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		2800.3 2792.4 2788.2 2783.6 2777.3 2816.9 2811.7 2799.0 2803.7	2926.8 2922.8 2922.6 2920.6 2923.1 2928.2 2928.7 2925.7 2925.7 2926.9	2729.8
GROUND SUR- FACE TO WATER SURFACE IN FEET		(1) %25.7 %25.7 %25.3 %25.3 %3.3 %3.3 %3.3 %3.3 %3.3 %3.3 %3.3 %	wr-m vo u u u u u u u u u u u u u u u u u u	0.11 0.00 0.00 0.14 0.00 0.00 0.00 0.00
DATE		2-14-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2-1-6-4-6-4-4-6-4-4-6-4-4-4-4-4-4-4-4-4-4	2-1-6-64 10-15-64 11-19-64 12-17-64 12-17-64 12-17-64 13-18-65 14-16-65 14-16-65 14-16-65 14-16-65 16-65 16-65
GRDUND SURFACE ELEVATION IN FEET	1-05.00	2836.0	2930.0	2735.0
STATE WELL NUMBER	SCOIT RIVER VALLEY	42N/09W - 08С3 м	42N/09W-27NOL M	4.3N/09W-24F01 M
AGENCY SUPPLYING DATA		2000 2000 2000 2000 2000 2000 2000 200	00000000000000000000000000000000000000	200000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		- 2612.2 2612.7 2610.4 2609.3 2609.3 2609.5 2609.5	2615.6 2616.2 2616.2 2615.0 2615.0 2615.0 2615.0 2615.0 2615.0 2615.0	2518.6 2519.1 2510.2 2510.2 2517.2 2518.9 2518.9 2520.3 2520.9 2520.9 2520.9
GROUND SUR. FACE TO WATER SURFACE IN FEET		(1) (2) (2) (3) (3) (4) (4) (5) (5) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	48.000000000000000000000000000000000000	100 1 100 100 100 100 100 100 100 100 1
DATE		7-16-64 8-21-64 9-17-64 10-15-64 11-19-64 12-17-64 12-17-64 12-17-64 1-21-65 2-18-65 4-16-65 6-17-65	7-17-64 8-21-64 10-15-64 11-15-64 11-17-64 12-17-64 12-17-64 1-21-65 3-18-65 3-18-65 4-16-65 6-17-65	7-16-64 8-21-64 9-17-64 11-19-64 12-17-64 12-17-64 1-19-65 1-19-65 1-10-65 1-10-65 1-10-65 1-10-65 1-10-65 1-10-65
GROUND SURFACE ELEVATION IN FEET	00.1	2637.0	2635.0	2538.0
STATE WELL NUMBER	SHASTA VALLEY 1-04.00	¼¼И/о5W−3¼НО1 М	45N/05W-29BO1 M	45N/06W-19E01 M

TABLE C-2 (Continued)

AGENCY SUPPLYING DATA		2000 2000 2000 2000 2000 2000 2000 200	000	2000 2000 2000 2000 2000 2000 2000 200	22000 22000 22000 22000 22000	00000
WATER SURFACE ELEVATION IN FEET		444884 - 888388 640670 7550		44408 8882 54660 44646		4.04.00 4.04.00
GROUND SUR. FACE TO WATER SURFACE IN FEET		99 88888999999999999999999999999999999	34.5		0 0 0 0 0 F W 0 0 0 0 0 0 0 0 0 0 0 0 0	1 W W W F
DATE		7-15-64 8-20-64 10-14-64 11-18-64 1-00-65 1-00-65 1-17-65 1-17-65 1-15-65 1-15-65	7-15-64	8-20-4 10-1-6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	7-15-64 8-20-64 9-16-64 10-14-64 11-18-64 12-16-64 12-16-64	2-17-65 3-17-65 4-15-65 6-16-65
GROUND SURFACE ELEVATION IN FEET	1-10.00	5 ⁴ €.0	0.09		900	
STATE WELL NUMBER	EEL RIVER VALLEY	O3W/O1W-18DO1 H	O3N/OIW-34JO1 H		03N/02W-26R01 H	
AGENCY SUPPLYING DATA		00000000000000000000000000000000000000		20000000000000000000000000000000000000	2000 2000 2000 2000 2000	000000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		2703.0 2696.8 2688.2 2688.2 2684.9 2703.1 2703.1 2703.1 2705.2		140.33 135.81 135.53 145.1 147.9 147.9	13.8 13.8 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5	17.7
GROUND SUR. FACE TO WATER SURFACE IN FEET		8 0 4 4 4 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9		10, 17, 70, 70, 70, 70, 70, 70, 70, 70, 70, 7	ره ۱۱۵۹ نا مرتنمور نا مرتنمور	-0.5.5.5.F -0.5.5.5.F
DATE		2-16-64 10-15-64 11-19-64 11-19-64 11-17-64 11-17-64 11-17-64 11-18-65 18-65 18-65 18-65 18-65 18-65 18-65 18-65			7-17-64 8-20-64 10-14-64 117-64	12-10-04 1-00-65 2-17-65 4-15-65 6-16-65
GROUND SURFACE ELEVATION IN FEET	1-05.00	2711.0	1-08.00	151.0	25.0	
STATE WELL NUMBER	SCOIT RIVER VALLEY	44N/09W-28PO1 M	MAD RIVER VALLEY	06N/01E-06H01 H	06м/олв-29гол н	

AGENCY SUPPLYING DATA		00000000000000000000000000000000000000	2000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000
WATER SURFACE ELEVATION IN FEET		1386.3 13882.3 13882.3 1389.5 1389.5 1398.5 1398.5 1398.5	1392.6 1388.6 1384.7 1387.3 1397.3 1400.1 1399.4 1399.4	1669.8 1670.3 1670.3 1674.3 1682.9 1682.9 1682.0 1682.0
GROUND SUR- FACE TO WATER SURFACE IN FEET		28.88.89.99.05.6.89.99.05.09.05.09.09.09.09.09.09.09.09.09.09.09.09.09.	448.004 47.6007 40007 40000 40000	181 1777 1377 100,00 10
DATE		7-14-64 8-19-64 10-13-64 11-17-64 11-17-64 11-17-64 1-00-65 2-17-65 3-17-65 4-15-65 6-15-65	7-14-64 8-19-64 19-15-64 11-13-64 11-13-64 12-16-65 1-15-65 1-15-65 1-15-65 1-15-65 1-15-65	7-14-64 9-19-64 9-19-64 10-14-64 11-18-64 11-18-64 1-19-65 1-17-65 1-17-65 1-17-65 1-17-65
GROUND SURFACE ELEVATION IN FEET	8	1409.5	1403.0	1-12.00
STATE WELL NUMBER	ROUND VALLEY 1-11.00	23N/1.3W-36GO3 M	23N/13W-36фол м	LAYPONVILLE VALLEY 21N/14W-30M01 M
AGENCY SUPPLYING DATA		2000 2000 2000 2000 2000 2000 2000 200	7,000 7,000	7,000 7,000
WATER SURFACE ELEVATION IN FEET		1337.2 1336.7 1335.2 1344.7 1344.7 1344.6 1344.6	1382.9 1377.3 1377.3 1377.3 1377.3 1370.5 1392.5 1392.5 1392.0	1380.1 1380.1 1384.0 1391.7 1396.7 1397.2 1394.4
GROUND SUR- FACE TO WATER SURFACE IN FEET		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17.1 28.20.1 28.50.1 2.0.5 4.6 6.5 6.5 6.5 10.0	
DATE		7-14-64 8-19-64 9-15-64 10-13-64 11-17-64 12-16-64 1-00-65 2-16-65 3-17-65 4-15-65 6-15-65	7-14-64 8-19-64 10-13-64 11-17-3-64 11-17-64 12-16-65 3-17-65 4-17-65 6-18-65	7-114-64 8-19-64 19-15-64 11-17-64 11-17-64 12-16-65 2-16-65 7-18-65 6-15-65
GROUND SURFACE ELEVATION IN FEET	00	1351.0	1400.0	1388.5
	1-11,00	×	22N/l3w-l2ROl m	23V/12W-31NO1 M

TABLE C-2 (Continued)

	AGENCY SUPPLYING DATA		000000000000000000000000000000000000000	2000 2000 2000 2000 2000 2000 2000 200		
	WATER SURFACE ELEVATION IN FEET		1355.0 1355.0 1352.3 1352.3 1352.3 1363.0 1363.0 1363.0 1363.0	1338.1 1338.1 1338.0 134.0 134.3 134		
	GROUND SUR- FACE TO WATER SURFACE IN FEET		000000000000000000000000000000000000000	%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%		
	DATE		2-1-4-6-6-1-1-4-6-6-1-1-4-6-6-1-6-6-1-4-6-6-1-	7-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4		
	GROUND SURFACE ELEVATION IN FEET	1-13.00	1370.0	1365.0		
	STATE WELL NUMBER	LITTLE LAKE VALLEY	18N/13W-17JO1 M	18N/13W-18EO1 M		
	AGENCY SUPPLYING DATA		000000000000000000000000000000000000000	000000000000000000000000000000000000000		00000000000000000000000000000000000000
	WATER SURFACE ELEVATION IN FEET		1614.4 1661.3 1612.2 1612.2 1612.3 1621.3 1621.3 1621.3 1621.3 1621.3 1621.3 1621.3 1621.3	1645.5 1645.1 1648.1 1659.1 1659.2 1650.5 1650.5 1649.7		1332.6 1335.4 1335.4 1339.9 1339.6 1337.1
	GROUND SUR- FACE TO WATER SURFACE IN FEET		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1) (1) (1) (1) (1) (1) (1) (1)
	DATE		7-44-64 8-19-64 11-18-64 11-18-64 1-18-64 1-18-64 1-18-65 1-18-65 1-18-65 1-18-65 1-18-65 1-18-65	7-14-64 10-14-64 11-14-64 11-16-64 11-16-64 11-16-64 11-16-65 11-16-65 11-16-65 11-16-65 11-16-65		7-24-6; 8-19-6; 10-13-6; 11-13
	GROUND SURFACE ELEVATION IN FEET	1-12.00	1630.0	1653.0	1-13.00	1340.0
	STATE WELL NUMBER	LAYTONVILLE VALLEY	21N/15W-12MO2 M	21n/15w-24aol m	LITTLE LAKE VALLEY	18 1/ 13W-081O1 M

APPENDIX D SURFACE WATER QUALITY

SURFACE WATER QUALITY

The Surface Water Quality Data Program provides basic information on the quality characteristics of the State's surface waters. Data presented in this appendix are measured values of the chemical and physical characteristics of surface waters in the North Coastal Area, as shown on the "Area Orientation Map". The Surface Water Quality Data Program is performed in cooperation with local and other state and federal agencies.

All data presented in this volume are within the North Coastal Water Quality Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Figure B-1 in Appendix B shows the location of surface water sampling stations for the 1964-65 water year. Surface water quality samples are normally collected at or near existing stream gaging stations.

The Surface Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature and dissolved oxygen are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature in degrees Fahrenheit. Laboratory analyses of surface water samples were performed by the U.S. Geological Survey (USGS) in accordance

with "Methods for Collection and Analysis of Water Samples", Water-Supply Paper 1454. Analysis of surface water samples for trace elements was performed by spectrograph by the U. S. Geological Survey and is reported in parts per billion.

Bacteriologic determinations were made by the California Department of Public Health in Berkeley, and are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation can be made.

TABLE D-I SAMPLING STATION DATA AND INDEX

NORTH COASTAL AREA

Station	Statian Number	Location	Period b of Record	Frequency c of Sampling	Sompled ^d by	Analysis an page
Bear River near Capetown	76	01W-03W-13*	MAY 64	М	DWR	54
Black Butte River near Covelo	5h	23N-11W-28	NOV 64	М	DWR	55
Eel River near Dos Rios	5d	21N-13W-31	APR 58	M	DWR	56 & 81
Eel River near McCann	5	025-03E-04*	APR 51	М	DWR	57
Eel River, Middle Fork at Dos Rios	5e	21N-13W-06	APR 58	М	DWR	58 & 81
Eel River, Middle Fork at Eel Ranger Station	5g	23N-11W-28	FEB 65	М	DWR	5 9
Eel River at Scotia	6	02N-01E-31*	APR 51	М	DWR	60 & 81
Eel River, South Fork near Miranda	7	03S-04E-30*	APR 51	М	DWR	61
Klamath River above Hamburg Reservoir Site	le	46N-10W-14	DEC 58	М	DWR	62
Klamath River below Iron Gate Dam	lf	47N-05W-17	DEC 61	М	DWR	63 & 81
Klamath River near Klamath	3	13N-01E-24*	APR 51	М	DWR	64 & 81
Klamath River at Orleans	2c	11N-06E-31*	JAN 64	М	DWR	65 & 81
Klamath River near Seiad Valley	2b	46N-12W-03	DEC 58	М	DWR	66 & 81
Mad River near Arcata	6a	06N-01E-15*	NOV 58	М	DWR	67 & 81
Mattole River near Petrolia	7a	025-02W-11*	JAN 59	М	DWR	68
Mill Creek near Covelo	5e	22N-12W-22	FEB 65	М	DWR	69
Outlet Creek near Longvale	570	20N-14W-01	MAY 58	М	DWR	70 & 81
Redwood Creek at Orick	3b	10N-Ole-O4*	NOV 58	М	DWR	71
Salmon River at Somesbar	2a	11N-06E-02*	NOV 58	S	DWR	72
Scott River near Fort Jones	16	44N-10W-29	DEC 58	М	DWR	73
Shasta River near Yreka	la	46N-07W-24	DEC 58	М	DWR	7 ¹ 4
Smith River near Crescent City	3a	16N-01E-10*	APR 51	М	DWR	75
Trinity River near Burnt Ranch	4ъ	05N-07E-19*	APR 58	М	DWR	76
Trinity River near Hoopa	4	08N-05E-31*	APR 51	М	DWR	77 & 81
Trinity River at Lewiston	la	33N-08W-17	APR 51	М	DWR	78
Van Duzen River near Bridgeville	5a	OLN-03W-17*	APR 58	М	DWR	79
Williams Creek near Covelo	5f	23N-12W-24	FEB 65	М	DWR	80

a Except as indicated below location is referenced to Mt. Diablo Base and Meridian *Humboldt Base and Meridian

b Beginning of record
c M-Monthly S-Semiannually
d California Department of Water Resources (DWR)

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2

BEAR RIVER NEAR CAPETOWN (STA. 70)

	Anolyzed by i	uses												
	form" A	Þ												
	Hordness bid - Coliform os CoCO ₃ 11y MPN/ml Total N.C. ppm		2		160		70	m	н				 	-
<u> </u>	N C. Dom	18			17 1		77	17	02				 	1
	Horda os Co Total ppm	140	7.2	2	79		96	122	145					
	L pos	15	5	1	19		15	13	7.7					
Total	solids solids in ppm						140 ^f							
	Other constituents						ABS 0.0 As 0.00 Po ₄ 0.05	PO _{1,} 0.05						
	Silica (SiO ₂)						OJ.							
million per million	Boron (B)	0.2	-		0.1	_	0.1	0.0	0.0					
	Fluo- ride (F)				_									
ports per million equivalents per mill	NI- trote (NO ₃)						1.3	0.00					 	
equiv	Chlo- ride (Cl)	7.4	-	0.17	9.5 0.27		5.4	6.1	0.21					
Ē	Sul - fote (SO ₄)						25 0.52							
tifuents	Bicor- bonate (HCO ₃)	143 2.34	u.	47.0	76		93	11.93	149 2.44					
Mineral constituents in equivalents	Carbon – E	3 0.10		0.0	000		3	50.17	2 0.07					
Miner	Potas- Ca sium (K)	m l o	(o l o	00			NO	0 1 0	_	_		 	-
	Sodium Por	to		to	- ho		3 0.04		ko.					+
	Sod (6	0.43		0.28	8.8 0.38		7-7	8.6	11 0.43	_		.	 	-
	Magne-	()		_			07.0	£)						+
	Calcium (Co)	2.80			1.58°		30	2.44°C	8.5					4
	A S (C)	2 L	1	7-7	7.3		7.9	8.1	8 8 8			·	 	\dashv
2000	conductonce (micrombos of 25°C)	318	5	141	199		223	273	324					
	Dissolved oxygen ppm %Sat	76		95	8		46	89	105					
		10.1	0	10.8	10.7		10.0	8.9	9.7	_			 	
	Temp in OF	57	mpled	<u>Q</u>	mpled 45	mpled	mpled 55	09	poldur 67	mpled				
	Dischorge Temp in cfs in 0F	Est.	Not Sampled		Not Sampled EST. 35 45	Not Sampled	Not Sampled Est. 55	30	Not Sampled Est. 67	Not Sampled				
	Dote ond time sompled P.S.T.	10/14/64	111/	12/3	2/11/65	3/65	4/65 5/11 0845	1430	7/65 8/4 1030	59/6				

b Laboratory pH. o Field pH.

c Sum of colcium and magnesium in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water".

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geolagical Survey, Quality of Water Branch (USGS)

-54-

NORTH COASTAL REGION (NO.1)

BLACK BUTTE RIVER NEAR COVELO (STA. 9h)

	Anolyzed by i		nscs											
	bid - Caliform ity MPN/mi In ppm													
1 70	pid - ity mppm		Н	10		1400	120	380	100	10	-	0	ч	
	N CO3		27	9		91	16	15	12	50		775	59	
	1 1		124	55		72	78	77	72	112	170	178	212	
	Sod -		11	12		6	ω		£ 0	∞	t-		<u>-</u>	
Total	solved solved in ppm		169	142		\$			107				272	
	Other constituents					PO ₁₄ 0.05	PO4 0.10	PO _{l,} 0.10	ABS 0.0 AS 0.00 FO ₄ 0.10	PO4 0.10	PO ₄ 0,10	Po4 0.05	ABS 0.0 AS 0.00 Po ₄ 0.02	
	Silica (SiO ₂)		6.9	9.3		2.7			9				13	
lian million	C		0.0	0.0		0.1	0.0	0.2	0.0	0.2	0,0	0,0	0,0	
millia per mi	Fluo- ride (F)		0.03	0.1										
ports per million equivalents per mil	Ni- trate (NO ₃)		0.7	0°6 0°0		1.3	0.00	1.8	1.4	1.4	1.3 0.02	2.5	0.1	
equiv	Chla- ride (CI)		3.2	0.02		7.0	1.0	0.02	0.0	1.0	1.6	1.9	2°7	
L S	Sul - fate (SO ₄)		39.	11 0.23		0.31			16 0.33				77.	
constituents	Bicar- banate (HCO ₃)		106	60 0.98		75	83	76	1,21	108	244	2.59	176 2.88	
Mineral car	Carban- ate (CO ₃)		02.0	000		0000	00.00	0000	10.03	20.07	6	0.03	5	
Min	Patas- sium (K)		0.4 0.01	0.8		0.03			0.9				1.7	
	Sodium (Na)		7.1	3.4		3.4	3.5	4.5	3.4	0.50	6.1	6.2 0.27	7.5	
	Mogne- sium (Mg)		4.0	30		2.9			0.23				8.5	
	Calcium (Ca)		43 2.15	17 0.35		24 1.20°	1.68	1.54c	25	2.24°	3.40 c	3.56°	77.	
	1 0 0		8.1	7.4		0 N	8.1	26.2	8.3	7.8	0.0	889	0.17	
Specific	canductance (micramhos at 25°C)		276	124		155	176	169	160	237	342	358	756	
	15	er4	16	95		66	19	95	95	86	8,	8	88	
	Oisso oxyo ppm	Sample	10.4	11.2	Sampled	11.9	4.7	10.6	9.5	80	7.9	7.9	ο. 	
	Temp in of	Not	50	43	Not	775	64	147	29	88	92	92	72	
	Oischorge Temp in cfs in oF													
	ond time sompled P.S.T.	₩0/01	11/6/64	12/4 1205	1/65	2/2/65 0930	3/11 1220	4/15 1220	5/13 1105	6/9 1715	1/22	8/5	9/23	

o Field pH.

b Labaratary pH.

c. Sum of calcium and magnesium in epm.
d. Heavy metals reported in table of "Spectragraphic Analyses of Surface Water"
e. Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) EEL RIVER NEAR DOS RIOS (STA. 5d) TABLE D-2 (Continued)

		Anolyzed by i	ISGS											
	4	bid - Coliformii ity n ppm MPN/mi	_8											
	Tur	- piq - piq - ki u bbm	Т	ч	50		100	15	200	20	н	-	0	Ţ
		Hordnese os CoCO ₃ Total N.C.	115 8	126 13	57 1		58 1	9 6	64 2	85 2	110 6	105 8	107 9	116 14
-		To To	20	17 1	17	_	1 ₄	12	17	13	15 1	17 1	18 1	17
\mid	to to	mog ui	CU .							116 [1				165 1
-	7													
		Other constituents d					Po ₄ 0.10	PO ₁ 0.05	PO ₄ 0.15	ABS 0.0 As 0.01 PO ₄ 0.10	PO ₁ 0.10	PO ₁₄ 0.10	PO ₁ 0.05	ABS 0.0 AS 0.00 PO ₄ 0.00
		(S:02)								17			1	T ====================================
6	nillion	Boron (B)	9.0	0.5	0.5		0.1	0.2	0.1	0.2	0.2	0.4	0.4	<u> </u>
ir milli	per million	Fluo- ride (F)												
ports per million	eguivolents	rrate (NO ₃)					1.2	0.0	1.8	1.5	0.02	0.03	3.0	0.00
	eguiv	Chio- ride (CI)	9.4	8.1	22 0.06		1.0	3.4	1.8	2.3	3.6	5.6	6.2	0.23
	<u>=</u>	Sul - fate (SO ₄)								12 0.25		_		0.00
	constituents	Bicar- bonate (HCO ₃)	130	134	68		1.15	109	75	101	123	110	1.87	124 2.03
	Mineral co	Corbon- ofe (CO ₃)	00.00	20.07	00.00		00.00	00.00	00.00	00.00	20.07	4 0.13	3 0.10	000
1	ž	Potos- sium (K)								0.03				0.04
		Sodium (No)	13	12 0.52	5.2		4.3	6.2	6.2	5.9	9.0	10	1100.48	0.48
		Mogne- sium (Mg)								6.1				0.57
	Ī	Calcium (Ca)	2.30	2.52	1.14		1.16	1.90 c	1.28	24 1.20	2.20	2.10	2.14 c	1.75
		F 910	00 00 00 00	8.3	8.1		8.2	8.7	8.1	000	7.7.8	8.1	4.8	0.E
	Specific	conductance (micromhos at 25°C)	281	599	135		129	208	148	188	544	247	255	277
		1 75 (96	8	8		66	82	88	97	112	101	95	92
	i	Dissolved oxygen opm %S(9.1	5.6	10.7		11.2	0.6	9.5	8.7	6.0	9.6	0.8	φ• ω
	1	Temp in OF	62	55	917	sible	84	51	51	19	75	72	73	19
		Dischorge Temp in cfs in PF	3.4	50		Inaccessible		180	1600	290	09	15	10	6.
		ond time sampled P.S.T.	10/15/64	11/6	12/4	1/65	2/1	3/11	1000	5/13	6/9	7/22 0905	8/5 0815	9/23 0850

o Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm. d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral anolyses made by United States Geological Survey, Quality of Water Branch (USGS);

EEL RIVER NEAR McCANN (STA. 5) NORTH COASTAL REGION (NO.1)

Anolyzed by i USGS Coliformh MPN/ml Н ∞ \vdash \vdash _ 9 80 9 80 9 12 Hardness os CoCO₃ Total N.C. ppm ppm ∞ ∞ 0 19 10 28 S 13 Ħ 160 173 53 92 96 8 119 181 136 87 Total Par-dis-solved sod-solids lum in ppm 10 10 2 11 13 71 10 10 H 디 \Box 116f 220f O Other constituents 0.0 As 0.00 0.03 0.0 As 0.00 0.10 ABS PO_L ABS PO₁ Silica (SiO₂) 걸 H Baron (B) 0.2 0.1 0.1 0.2 0.2 0.2 0.0 0.0 0.1 0.5 0.5 equivalents per million ports per million Flug-ride (F) rate (NO3) 1.00 000 6.9 2.2 4.8 5.5 Chlo-cide (CI) 2.0 2.8 0.37 5.3 Sul -fate (SO_a) 13 28 Mineral constituents in Bicar-banate (HCO₃) 2.70 3.10 3.25 $\frac{103}{1.69}$ 2.07 60.98 Carban-ote (CO₃) 000 000 000 0.13 0.00 0.13 00.00 0.00 7.0.23 0.13 0.03 0.05 Potas-Sium (K) Sadium (No) 9.2 4.4 8.1 9.8 7.6 0.18 5.2 5.0 6.0 8.5 1.03 Magne-Stum (Mg) 6.1 1.00° Calcium (Ca) 0 0 7.8 2.9 0.0 2000 88.0 7.7 H ele Specific conductance (micramhas par 25°C) 248 330 373 118 198 288 315 164 184 %Sot Dissolved 100 66 66 16 86 8 82 100 102 97 46 cessib 11.0 11.5 8.6 10.6 8.8 8.7 8.7 8.9 9.1 9.6 Discharge Temp in cfs in oF Ina 69 87 53 53 63 12 7 58 51 19 69 Date and time sampled P.S.T 10/14/64

6/9

7/21

5/12

11/5

12/3 1/65 2/9

3/10

1,714

Field pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water"

Derived fram canductivity vs TDS curves.

Determined by addition of analyzed constituents

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Califarnia Department of Public Health, Division of Laborataries, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

MIDDLE FORK EEL RIVER AT DOS RIOS (STA. 5c) NORTH COASTAL REGION (NO. 1)

	Analyzed by i	nsgs											
4	E E	Ü											
Į	bid - Coliform" ity MPN/ml			09		800	100	200	140	11	ч	-г	н
- F	N.C. ppm	75	23	7		9	10 1	6	7	13	32	37	95
	Hordness oc CoCO ₃ Total N.C. ppm ppm	151	120	54		7.9	82	833	75	107	169	174	194
- 1	sod -	19	18	12		6	σ.	김	10	07	10	11	12
Total	solved solids in ppm								102				\$ [†]
	Other constituents d							PO _{1, 0.15}	ABS 0.0 As 0.00 PO ₄ 0.10	PO _{1, 0.10}	PO _{1,} 0.10	PO _{1, 0.05}	ABS 0.0 As 0.00 PO ₄ 0.09
	Silico (SiO ₂)					ما	ما		10	.1		~l	21
per million	- Boron (B)	0.3	0.3	0.3		0.0	0.0	0.4	0.1	0.1	4.0	0.3	0.0
- I	Fluo- ride (F)									1			olo
parts pe	NI- trate (NO ₃)					0.05	0.00	0.03	0.0	0.00	0.02	0.9	000000000000000000000000000000000000000
equi	Chlo-ride (CI)	38	14	0.03		0.03	1.8	0.05	0.05	2.6	8.2	0.28	0.45
n: s	Sul - fate (SO ₄)								13				29 1.23
Mineral constituents	Bicar- bonate (HCO ₃)	126 2.07	110	61		80	88	90	83	107 1.75	153 2.51	141 2.31	2.64 2.69
eral con	Corbon- ate (CO ₃)	00.00	2 0.07	00.00		00.00	0.00	0.00	00.00	20.07	0.23	13	0.07
Min	Potas- Sium (X)								0.0				0.02
	Sodium (No)	17	12 0.52	3.5		3.5	4.0	4.7 0.20	3.8	5.1	8.6	9.7	0.52
	Magne- sium (Mg)								0.40				1.38
	Colcium (Co)	3.14	2.40	1.08		1.44 c	o 49.	0 1.66	25	2.08	3.38	3.48	2.50
	E ala	88.2	7.8	8.0		8.2	8.2	8.0	8.0	217	8.8	8.1	1.1. 0.00
pecific	(micromhos pH at 25°C) a	394	300	121		154	177	180	164	222	353	368	914
0.	lved co	110	101	16		100	93	%	76	102	102	101	103
	Dissolved oxygen ppm %Sc	10.3	10.8	11.0		11.9	10.6	7.6	10.0	8.7	8.7	8.7	9.6
	Temp in of	79	52	143	sible	717	24	84	55	72	22	73	79
	Discharge Temp in cfs in oF	9.5	106	0104	Inaccessible	0569	est. 600	5240	1400	907	69	<u>1</u>	25
	ond time sompled P.S.T.	10/14/64	11/6	12/4	1/65	2/2 1145	3/11 0950	1020	5/13	6/9	7/22 0935	8/5	9/23 0920

b Loboratory pH.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" c Sum of calcium and magnesium in epm.

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

MIDDLE FORK EEL RIVER AT EEL RIVER RANGER STATION (STA. 5g)

	Analyzed by i		nsgs										
	bid - Coliformh												
	bid- ty mpg n		7	Ŋ		500	09	150	140	10	-	0	н
	2003 CO3		17	7		m	9	2	m	00	33	43	65
	1		76	42		75	57	26	1,48	69	146	163	196
	Sod -		23	13		10	10	1	7	12	77	77.	16
Total	solids solids mod ni		140f	58f		80 ^f			72 [£]				272
	Other constituents d												
	Silica (SiO ₂)		<u>F-9</u>	1.9		8.6			7.2				11
lion	5		0.1	0.0		0.0	0.0	0.0	0.0	0.2	0.3	0.2	4.0
million per million	Fluo- ride (F)		0.00	0.3						-			
ports per million	_		00.00	0.0		0.0	0.00	0.0	0.9	0.05	1.3	0.9	00.00
equive	Chlo- ride (CI)		16	0.0		0.0	1.8	0.05	1.7	3.7	17	23 0.65	0.96
2	Sut - fote (SO ₄)		21 0.44	7.0		9.0	10		7.0		<u> </u>	(4)0	1.12
Mineral constituents	Bicor- bonote (HCO ₃)		9.1	46 0.75		62 1.02	62 1.02	1.02	55	74	132	140	2.46
arol cor	Carbon- ote (CO ₃)		3.0	00.00		00.00	00.00	00.00	00.00	0.00	3	3	0.17
Min	Potas- Sium (K)		0.0	0.0		1.1	0,0	0,0	0.0		. 10	V-110	0.00
	Sodium (Na)		13	2.9		2.8	3.1	3.2	2.8	4.1	11 0.48	12 0.52	00-74
	Mogne- sium (Mg)		6.0	2.3		2.8			2.6				0.98
	Calcium (Co)		29 c	13 c		17 c	1.14 c	1.12	15	1.38°	26.2	3.26	900 46.
	ج هاره ماله		80 80 61 12	4.0		8.2	7.6	7.7	7.7	8.2	8.5	88	11.00
0.00	conductonce (micromhos at 25°C)		251	96		120	125	टा	109	156	332	372	1463
			107	88		86	88	95	97	95	66	100	104
	Dissolved oxygen ppm %Sol		11.5	10.5		11.7	6.6	10.8	10.1	4.8	8.2	8.2	7.
-		led	50	1,2	led	775	74	94	53 1	67	73	1 2	5
	Discharge Temp in cfs in oF	Not Sampled			Not Sampled								
	Dote and time sompled P.S.T.	10/64	11/6	12/4	1/65	2/2 0900	3/11	1210	5/13	1700	7/22	8/5 1130	1130

o Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Heovy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); g Gravimetric determination.

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

EEL RIVER AT SCOTIA (STA. 6)

	yzad i													
	Analyzed by i	USGS	Ħ	я										
	bid - Coliform" ity MPN/ml	Median 425	Maxdmtm 7000	Minimum 0.62										
Tur	- bid ity in ppm	ч	m	500		200	2	120	75	Ħ	m	н	н	
	S S S S S S S S S S S S S S S S S S S	0	11	2		7	ľ	9	7	9	0	m	ι -	
		137	129	7,5		81	83	85	26	123	153	156	174	
-	sod -	77	77	₹		13	27	15	#	12	27	12	12	
Toto	solved solids in pam								131 [£]				204 [£]	
	Other constituents d								ABS 0.0 As 0.00 Po _{t,} 0.10				ABS 0.0 As 0.00 PO _{\upper} 0.02	
Ì	Silica (SiO ₂)								킈				9.6	
lion	Boron (B)	0.1	0.1	0.1		0	1.0	0.1	0.1	0.1	1	0.1	0.0	
per million	Fluo- ride (F)													
1 1	Ni- trate (NO ₃)								1.3				0.0	
equivalents	Chio- ride (CI)	7.8	8.6	4.8 0.14		2.6 0.07	3.6	3.1	3.0	3.3	5.6	6.2	7.3 0.21	
_	Sut - fote (SO ₄)	1-10	<u> </u>			10,0		.,,,	13. 0.27	. ,,0	- 40		20°. 0°42	
		Im	ko				to	11-	1.5	lto	IO	11:-		_
constituents	- Bicar- bonate (HCO ₃)	148 2•43	2.36	0.80		1.5	115	1.57	108	139	172 2.82	175 2•87	3.03	
Mineral c	Corbon- ofe (CO ₃)	10	000	0.00		0000	000	000	3	2 0.07	7.0.23	0.20	8 0.27	
Σ	Potos- Sium (K)								0.03				0.05	
	Sodium (Na)	10 0.44	9.6	6.5		5.5	6.0	7.2	5.6	7.4 0.32	2.1 0.40	9.8 0.43	11. 0.43	
	Magne- S sium (Mg)	HIO	odo	010		140	010	K-10	9.9		040	- 040	0.84	
	Calcium N	5 <u>74</u> c	5.58°	206.0		329:] %:1		28.	3 94.2	3.06	3.12°	2.64	
	PH D	8 8 4 8	0.0	7.3		7.7	7.7	7.9 8.2 1	8.0 2	88.1	8.6	7.9 8.5	88.0	
Specific	(micromhos at 25°C)	306	301	122		181	216	192	509	560	328	330	357	
		149	901	8		%	75	77	ま		8,	100	75	
	Dissolved oxygen ppm %Sa	13.2	10.9	9.8		11.3	8°.0	10,1	80.00	8.3	7.9	 2	4.6	
		고	82	23	ble	164	53	57	99		72	73	63	
	Discharge Temp in cfs in aF	88	815	30,600	Inaccessible	900,11	2,800	1,390	6,320	1,050	545	टार	142	
	ond time sampled P.S.T.	10/14/64	7/11	12/2 1335	1/65	2/9	3/10	4/14 1230	5/12 5411	1700	1,20	8/3 1630	9/22 0725	

o Field pH.

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department af Public Health, Division af Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

⁻⁶⁰⁻

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

SOUTH FORK EEL, RIVER NEAR MIRANDA (STA. 7)

Г		v			_									
		Anolyzed by i	USGS											
		bid - Coliform tty n ppm MPN/ml	Median 17.12	Maximum 62.	Minimum .06									
		- pid Apple	н	Н	200		120	8	04	Ħ	2	N	ч	н
		N C O S	10	5	0		0	0	0	0	0	0	0	0
		Hordr Totol Ppm	130	105	4		29	88	92	833	108	137	140	165
		t e do	77	16	ส		18	15	16	15	14	15	15	13
	Total	solids in ppm								117				197
		Other constituents ^d								ABS 0.0 As 0.00 PO _{1,} 0.10			PO _{1,} 0.05	ABS 0.0 As 0.00 Po _{th} 0.06
		Silica (SiO ₂)								13.				13.
	million	Boron (B)	0.2	0.3	0.1		0.1	0.0	0.1	0.1	0.1	0.3	0.1	0.1
	per m	Fluo- ride (F)												
(equivalents per mil	Ni- trate (NO ₃)								0.9			3.1	0.0
	equiv	Chlo- ride (CI)	5.3	7.4	2.7		0.08	3.9	3.4	3.7	3.8	5.8	6.2	0.21
	E .	Sul - fate (SO ₄)								8.0				0.25
	constituents	Bicar- bonate (HCO ₃)	138	1.90	51		384	108	95 1.56	1.62	129	2.59	2.72	3.26
	Mineral cor	Carbon- ote (CO ₃)	4 0.13	3 0.10	00.00		0.00	00.00	0.00	20.07	3 0.10	0.23	5 0.17	0.07
1	Ā	Potos- sum (K)								1.1 0.03				0.04
		Sodium (N0)	7.6	9.4	5.1		6.6	7.0	6.7	6.8	8.2	11.	11. 0.48	0.48
		Magne- sium (Mg)								6.8				1.10
		Calcium (Ca)	2.60	2.10°	0.82		1.34°	1.76°	1.52°	22.	2.16	2.74c	2.80	44. 2.20
		를 ¤Io	8 8 8	88.3	7.5		7.4	8.1	8.2	8.5	8.0	88.8	80 80	0 E
	Specific	conductonce (micromhos of 25°C)	278	246	104		154	197	178	190	238	295	300	349
		5	102	116	103		89	88	88	8.	93	119	129	112
		Disso oxy ppm	9.6	11.7	11.11		10.5	9.6	10.1	8.0	0.6	10.2	10.8	10.2
		Temp in 0F	65	59	53	ible	917	52	52	88	62	47	76	89
		Discharge Temp in cfs in 0F	31	134	5370	Inaccessible	1400	200	720	1360	232	88	82	79
		Dote ond time sompled P.S.T.	1330	11/5	12/3	1/65	2/9 1245	3/10	4/14 1500	5/12 1430	6/9	7/21	8/4 1500	9/22

b Laborotory pH.

c Sum of colcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Heolth, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

KIAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA.1c) NORTH COASTAL REGION (NO. 1)

	Anolyzad by i	USGS													
A	J/mt A:	ñ													
	bid - Coliform" ify MPN/mi														
	P P C	ε		Ω		20	04	25	50	133	<u>е</u>	m	m	m	
	Hordness as CoCO ₃ Total N.C.	ਰ E		0		0	0		· ·	0	0	0	O	-	
	sod - as			- 1	81	75	58	26	85	1 95	607	120	124	109	
	solved solved in pom	34		35	37	31	53	30	35	189f 31	34	37	14	264£ 42	
ہَۃِ، ا	q		_							77					
	Other constituents									ABS 0.1 AS 0.01 PO ₄ 0.15	PO _{1, 0.10}	PO ₁ 0.25	PO1, 0.50	ABS 0.0 As 0.01 PO ₄ 0.77	
Ì	Silico (\$102)									22				56	
Hion	Boron (B)	0.0		0.3	0.3	0.1	0.1	0.1	7.0	0.1	0.1	0.2	0.2	0.1	
per million	Fiuo-														
	rote (NO.)	_	0.04	0.07	5.2	2.0	3.7	1.6	1.3	0.02	0.00	3.0	2.2	0.04	
ports pe equivalents	Chlo- ride			0.18	5.7	3.5	0.00	2.2	6.2	5.6	0.23	9.0	10.	0.24	
Ĕ	Sul - fote (SO.)						(0)0			31.				1.39	
Mineral constituents	Bicor- bonote (HCO-)		1.87	107	115	87	80	76	1.87	121	128 2.10	142 2.33	2.43	2.25	
e cons	Corbon - E			00.00	00.0	00.00	00.00	00.00	00.00	0.00	0.20	2 0.07	2 0.07	00.00	_
Miner	Potos- Co		o	olo	olo	olo	olo	00	00	0000	9 0	a l 0	α Ι Ο	000000000000000000000000000000000000000	
	Sodium Po (Na)		im	lm lm	ło.		ko	ko	11:-		lm	10	IO		
		18.	0.78	18. 0.78	0.96	13.	11.	11.	20.	1 20. 75 0.87	26.	32.	39.	1.65 1.65 1.65	
	Magne-	O		٥١٠	٥١.	۰۱.	٥١٥	۰٫۱۰۰	٥١.	9.1	ا ا	<u> </u>	ما	1.18	
	Colcium (Ca)		1.54	1.42	1.62	1.28	1.16	1.12	1.64	23.	2.18	2.40	5.48	, 00 1, 00 1	
.0	C) S G	7.9	7.9	7.6	8.2	7.4	7.4	7.6	7.9	000	88	2.88	9.0	0.817	
Specif	(micromhos of 25°C)	228		516	256	181	163	163	247	275	324	373	418	385	
	Dissolved oxygen	101		%	87	- 98	93	92	98	76	66	107	103	104	
	Disso	4.6		10.3	10.2	11.2	11.3	10.9	6.6	8.6	5.6	8.7	8.0	9.6	
	Temp in oF	62		50	77	36	147	43	82	55	59	75	70	63	
	Dischorge Temp														
	Dote ond time sompled	19/9/01	1040	11/11	12/8	1/13/65	2/3	3/3	1220	5/4 1115	6/15	7/14	8/11 1220	1150	

a Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Duality of Water Branch (USGS);

-62-

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER

KLAMATH RIVER BELOW IRON GATE DAM (STA. 1f) NORTH COASTAL REGION (NO. 1)

	Anolyzed by i	USGS		-									
	bid - Coliform 11y MPN/ml	Medium 43	Maximum 24,000	Minimum 2.3	· · · · ·								
	- pid -	н	CI CI	- -	50	30	02	15	5	2	ന	ന	m
	N.C.	0	0	0	0	0	0	0	0	0	-	7	-
		63	52	78	14]	143	717	59	16	205	111	116	70
	sod –	36	37	38	37	36	36	39	36	39	7 7	44	0 7
Totol	solived solids in ppm								187 ^f				263 ¹
	Other constituents d	PO ₄ 0.45	Po _{1,} 0.60	PO ₁ 0.50	PO ₁ 0.50	PO ₄ 0.20	PO _{1, 0.25}	PO _{1, 0.30}	ABS 0.0 As 0.00 PO ₄ 0.20	PO _{1,} 0.15	PO _{1,} 0.50	PO ₄ 0.55	ABS 0.0 As 0.01
	Silico (SiO ₂)								23				28
Lion	Boron (B)	0.0	0.1	0.0	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	1,0
million per million	Fluo- ride (F)												
1 20 1	Ni- trote (NO ₃)	3.4	5.1	5.2	4.7	3.8	2.0	1.2	0.0	1.3	2.8	3.2	0.07
ports p	Chlo- ride (CI)	3.6	3.3	5.0	2.5	1.6	2.4	3.4	5.5	8.7	8.5	9.5	0.22
Ē	Sul - fate (SO ₄)			<u>-</u>					35				1.48
constituents	Bicar- bonate (HCO ₃)	93 1.52	1.26	102	80.0	59 0.97	62	78	121	94	130	136	126 2.07
1	Corbon- ote (CO ₃)	00.00	00.00	00.00	00.00	00.00	00.00	00:00	00.00	18	0.00	00.00	00.00
Mineral	Potos- Srum (K)								1.6	·			0.13
	Sodium (No)	16.	14. 0.61	0.96	0.48	11.0	11.	17.0	24.	30.	35.	1.83	1.48 1.48
	Mogne- Sium (Mg)			CUIO				.,,	10	. 4.			0.98
	Colcium (Co)	1.26 c	1.04	1.56	0.82	98.0	° 78.0	1.18	20	2.04	2.22	2.32	1.10
	مانه خ	3.0	8.0	7.2	7.3	4.7	7.8	7.5	0000	8.9	⇒ C ∞ ∞	8.1	9.7.2
Specific	conductance (micromhos of 25°C)	197	167	544	138	137	137	193	285	340	378	424	375
	1 %	26	69	73	100	96	16	93	83	115	113	833	85
	Disso oxy oxy	8.5	7.1	8.5	12.8	11.4	10.5	10.1	80.0	6.6	4.6	7.0	<u>-</u>
	Temp in OF	.61	52	43	36	17	€,	148	55	29	70	68	63
	Dischorge Temp in cfs in oF	1360	1890	2700	9530	11200	7880	3670	1660	778	708	1020	2220
	Dote ond time sampled P.S.T.	10/6/64	11/11 0930	12/8 0950	1/13/65 1035	2/3	3/3	0560 7/4	5/4 0835	6/15	7,414 0935	8/11	9/15 0945

b Laboratory pH.

c Sum of calcium and magnessum in epm. d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

TABLE D-2 (Continued)
ANALYSES OF SURFACE WATER
NORTH COASTMIL FROSTON (NO. 1)

NORTH COASTAL REGION (NO. 1) KLAMATH RIVER NEAR KLAMATH (STA. 3)

	Anolyzad by i	USGS												
-			E.	er.										
	Hordness bid - Coliform ^N os CoCO ₃ ity MPN/ml Total N.C. ppm	Median 313	Maximum 620	Minimum 0.23										
1	- bid - fiy mgg u	-1	α.	140		003	80	30	50	25	4	-3	10	
	dness CoCO ₃ N.C.	0	0	2		0	0	0	α	a	7		н	
	1 1	77	75	39		9	65	77	70	22	75	108	1174	
9	Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos	77.	23	16		17	16	16	16	18	19	19	31	
Total	solved solids in ppm								102 ^f				210f	
	Other constituents d								ABS 0.0 As 0.00 PO ₁ 0.05			19	ABS 0.0 As 0.00 PO ₄ 0.33	
	Silico (SiO ₂)								15				21	
lion	Boron (B)	0.0	0.1	0.1		0.0	0.0	0.5	0.5	0.0	0.0	0.1	0.1	
million per million	Fluo- ride (F)													
15.1	Ni~ trate (NO ₃)						-		1.6				0.02	
ports pe	Chlo- ride (Cl)	4.9	5.2	1.4		2.6 0.07	1.1	2.8	2.3	0.06	0.13	5.6	0.20	
ë	Sul - fote (SO ₄)								11 0.23				0.92	
constituents	Bicar- bonate (HCO ₃)	104 1.70	96	42		74	80	94	81 1.33	83	118 1.93	122	138 2.26	
	Corbon- ote (CO ₃)	00.00	0.00	00.00		0.00	00.00	0000	10.03	0000	14 0-13	0.13	0000	
Mineral	Potos- C sium (K)								0.0				3.1	
	Sodium (Na)	110.48	10	3.4		5.5	5.7	6.9	6.1	6.8	0.48	12 0.52	23	
	Magne- sium (Mg)								6.1				10 0.83	
	Calcium (Ca)	0 1.54	1.50	0.78		1.20	1.30	1.54	1.8	1.40	2.08	2.16	299	
	P B I O	8.0	7.7	7.4		7.8	7.6	7.6	2 7 8	7.8	8.5	8.0	8.0	
Specific	conductonce (micromhos of 25°C)	200	193	88		141	154	175	164	164	247	261	327	
	5	8	87	00		8	48	87	95	98	66	107	66	
	Dissolved axygen ppm %Sc	4.6	9.3	11.5		11.5	9.5	9.6	9.6	о. Э.	6.8	9.3	7.6	
	Temp in oF	62	55	167	ible	1t3 T	50	52	59	63	10	73	8	
	Dischorge Temp in cfs in oF	2990	4150	62200	Inaccessible	32400	20100	11600	13700	8300	3840	3100	2400	
	ond time compled P.S.T.	10/15/64	11/4	12/2	1/65	2/10 1010	3/9	4/14 0830	5/12	6/8	7/20	8/3 1315	1300	

o Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determination.

NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER AT ORLEANS (STA. 2c)

_													
	Analyzed by i	nscs											
	Caliform MPN/mi												
	- pad -	2	-	50		100	09	50	30	25	77	7	10
	SCO3 N C C S	0	0	m		0	0	0	-1	0	0	0	0
		72	70	37		59	09	73	19	79	104	105	1110
	s ad -	30	53	17		19	23	20	21	20	778	98	35
Totol	solids in ppm								lolf				228 [£]
	Other constituents								ABS 0.0 As 0.00 PO ₁ 0.00				ABS 0.0 As 0.00 PO ₄ 0.45
	Silica (SiO ₂)								15				52
lian	Boron (B)	0.0	0.1	0.1		0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.1
Ē	Fluo- ride (F)					-01			<u> </u>	- 0,		<u> </u>	
5	rrate (NO ₃)								0.02				0.00
parts p	Chlo- ride (CI)	4.9	0,12	1.4		1.3	1.4	3.1	0.07	2.4	5.4	6.3	0.22
Ē	Sul - fate (SO ₄)					.,,-	.,,,,,	- 40	0.29		- 140	0,0	1.06
constituents	Bicar- bonate (HCO ₃)	107	98	41 0.67		1.25	1.25	92	1.28	78 1.28	119	126 2.07	136 2•23
	Carban-1 Ote (CO ₃)	0000	00.00	00.00		00.00	00.00	00.00	0.03	00.00	4 0.13	0.03	0000
Mineral	Potas- C Sium (K)								1.3				0.09
	Sadium F (Na)	177	13	3.5		6.2	7.1	8.5 0.37	8.2	7.6	15	17	1.22
	Magne-sium (Mg)			- 1-			. 100		2.4	. 10		1,,0	0.10
	Calcium (Ca)	0 117	o ₄₀	0.7 ¹ 4		1.18	1.20	o 97.	18	1.28	2.08	2.10	2.10
	F 41.0	8.1	8.2	7.7		7.7	7.8	8.1	7.8	88.0	8.8	0.00 0.01	88.0 9.1 3.10
oscific	canductance (micramhas at 25°C)	208	194	98		142	148	182	165	161	998	276	346
- v	15 1	109	107	105		8	83	26	66	100	107	109	107
	Dissalved oxygen ppm %S(10.7	11.2	12.3		11.7	9.5	10.1	10.2	9.4 10	9.5	9.5	10.3
	1 1	60 1	55 1	179	ible	13 1	Lή	51 1	56 1	tp9	72	74	1
	Discharge Temp in cfs in 0F				Inaccessible				4	4200	2700	1970	1530
	and time sampled P.S.T.	10/13/64	11/3	12/1 1250	1/65	2/8	3/8 1340	4/12 1425	5/10	6/7	7/19	8/2 1340	9/20

a Field pH.

b Labaratary pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water"

e Derived fram canductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

KLAMATH RIVER NEAR SEIAD VALLEY (STA. 2b) NORTH COASTAL REGION (NO. 1)

	9												
	Anolyzed by i	SSSN											
-	s bid - Coliform" 3 ity MPN/ml C.												
Į.	bid - ity mpgm	-1	н	ω	96	40	25	15	10	4	m	2	a
	Hardness as CaCO ₃ Total N.C. ppm ppm	0	0	0	0	0	0	0	0	0	0	0	0
	Hord os Co DPm	80	78	82	2	69	59	78	81	88	120	124	111
Per-	e od –	33	31	34	56	22	29	53	24	56	32	37	39
Total	solved solids In som								135f				2571 39
	Other constituents						PO _{1,} 0.20	PO ₄ 0.20	ABS 0.0 As 0.00 Po ₁ 0.05	PO _{1,} 0.05	PO _{1,} 0.35	PO _{1,} 0.35	ABS 0.0 As 0.01 PO ₁ 0.70
	Silico (SiO ₂)								18				58
lion	Boron (B)	0.0	0.3	2.0	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.2	0.1
per million	Fluo- ride (F)			<u>U</u>	<u> </u>		<u> </u>						
	Ni- trate (NO ₃)	0.03	90:0	90.0	4.1 0.07	3.3	2.3	1.4	0.2	0.1	2.2	1.7	3.4 0.05
parts pe equivolents	Chlo- ride (CI)	6.5	0.18	5.7	3.3	2.1	0.06	5.1	0.06	5.4	8.5	10	0.24
=	Sul - Cl fate (SO ₄)	903	ناه	.00	mio	alo	alo		17 0.35 0.	200	ထပြ	H 0	1.35
constituents	Bicar- bonate (HCO ₃) ((120 1.97	109	1.85	92 1.51	84 1.38	79	1.87	101	1.80	145 2.38	146 2.39	2.25
	Corbon - Bi	0.00	0.00	90.0 10.0	00.00	0.00	00.00	00.00	3 1/0	0.50	0.03	0.13	00000
Minerol	Potos- Cor Sium (K)	olo	olo	010	010	010	olo	010	2.1 3	00	410	410	0.10
	Sodium Pol	- 82	102	33	11 0.48	37	11 0.48	0.70	12 2	16 0.70	26	34	34 1.48 0
	Mogne- Sou	18 0.78	16 0.70	0.83		8.6	110	916 916	8.8 0.72 0.	0 19	1 18	134	13 1-07 1-07 1-07
	Colcium Mo	209.	.56	p9.1	0 0 T	1.30	1.18	2.68		8	2.40	2.48	1.15
	ج ۱۵ عالی	8.2	2.5	7.8	7.5	7.6	7:7	7.9	20.0	8.5	2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.3	8 2 2 2 2 2 2 2 2 2
acific	(micromhos of 25°C)	239 8.	223	246	182 7	166	162	232	212	253	347	397	<u>∞k∞</u>
S	1 7												
	Dissolved oxygen ppm %Sc	112	.0 102	16 0.	8.	.1 84	.8	8.7 79	10.0	.1 103	9.5 115	8.6 101	9.8
		62 10.4	50 11.0	0.11 44	39 11.8	10.1	77 77	8 87	54 10.	58 10.1	73 9.	70 8	779
	e i	9	10		· · ·	4	7						
	Dischorge Temp in cfs in PF	1570	2270	3660				5990	4810	2430	1180	1300	5500
	Date ond time sompled P.S.T.	10/6/64	11/11	12/8	1/13/65	2/3	3/3 1345	1355	5/4	6/15	7/14	8/11	9/15

a Field pH.

b Loboratory pH.

c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectrogrophic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravímetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Woter Branch (USGS);

MAD RIVER NEAR ARCATA (STA. 6a) NORTH COASTAL REGION (NO.1)

		Andlyzed by i	USGS											
		bid - Coliform Analyzed	Median 8.4	Maximum 62.	Minimum 2.3							-		
	1	bid – ity In ppm	-	-7	360		150	55	100	25	N	m	CI .	н
		P N N	N	-	IV.		N	-	10	5	77	<u>-</u>	10	-
			87	82	8		53	78	59	79	103	125	126	124
		pos L pos	10	10	179		77	10	14	11	10	7	10	6
	Total	solved solved in ppm								92°£				1451
		Other constituents d								ABS 0.0 As 0.00 Po ₁ 0.00				ABS 0.0 As 0.00 PO ₁₁ 0.00
		Silica (SiO ₂)			1				1	7.6	-		1	0.6
uo	per million	Boron (B)	0.0	0.3	0.1		0.0	0.0	0.5	0	0.2	0.0	. 0	0.0
ili e	per n	Fluo- ride (F)												
ports per million	equivalents	Ni~ trate (NO ₃)								0.05				0.00
	equi	Chlo- ride (CI)	2.4 0.07	2.5	2.5		1.6	2.7	2.4 0.07	2.5	2.0	3.1	3.4	0.00
	ts in	Sul - fote (SO ₄)								10.				0.31
	nstituen	Bicor- banate (HCO ₃)	104	92	30		62 1.02	1+11	1.03	86 1.41	11.92	136	141 2.31	141 2.31
	Mineral constituents	Carban- ate (CO ₃)	00.00	0.0	0.00		0.00	0.00	00.0	20.07	20.07	0.13	3 0.10	0.03
	Σ	Potas- sium (K)						_		0.7				0.03
		Sadium (Na)	4.5	0.13	3.3		3.8	4.2	4.4	0.20	5.3	7.1	6.1	0.24
		Magne- sum (Mg)								4.6				3.4
		Calcium (Co)	1.74°C	1.64°C	0.60°		1.06	1.500	1.18	24.	2.06	2.50°	2.52	2.50°C
-		F & ID	7.9	2.2	7.5		4.5	7:7	7.6	7.8	8 8 1	8.0	© © 1.√.	2 2
	Specific	conductance (micromhos at 25°C)	194	183	16		121	170	135	173	219	259	262	257
		151	103	75	85		97	83	89	87	66	101	102	100
		Disso	0.	2.0	9.5		11.7	0.6	4.6	2.	6.6	9.5	9.5	o, n,
		Temp in of	65	82	15	sible	45	54	56	62	3	69	02	65
		Dischorge Temp in cfs in of	96	184	11,100	Inaccessible	1,600	418	1,100	425	172	19	69	T 17
		and time sompled P.S.T.	10/13/64	11/3	12/1 1630	1/65	2/10 1605	3/8 1550	4/12 1750	5/10 1730	6/7	7/19 1745	8/2	1800

a Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reaarted in table of "Spectragraphic Analyses of Surface Water" e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

MATTOLE RIVER NEAR PETROLIA (STA. 78) NORTH COASTAL REGION (NO.1)

	Anolyzed	by i	USGS													
	Coliforn	In ppm MPN/mi														
	201	n ppm	٦	77	160		100	0	45	35	15	Н	0	Н		
	o Sau	N C	6	22	ľ		4	0,	10	2	_	ω	∞	15	 	
			115	102	43		99	78	72	17	42	115	118	127	 	
	Per-	- pog -	16	15	53		19	15	17	16	15	17	177	13	 	
	dis-	solids in ppm								105f				169 ^f		
		Other canstituents d								ABS 0.0 As 0.00 Po ₁ 0.00				ABS 0.0 As 0.00 PO ₄ 0.02		
		Silico (SiO ₂)								i.				9.8		
اء	ugilion Willion	Boron (B)	0.1	0.1	0.0		0.0	0.1	0.2	0.1	0.1	0.0	0.1	0.1		
mallion	E Be	Fluo- ride (F)														1
انت	equivalents	rrote (NO ₃)								0.02				0.00		
d	eduiv	Chlo- ride (Ct)	4.9	4.4	3.1		3.7	3.3	3.2	3.4	3.0	0.11	4.6	4.8 0.14		
2	_	Sul - fate (SO ₄)								0.31				27.		
Mineral constituents		Bicor- bonote (HCO ₃)	125 2.05	94 1.54	46 0.75		68 1.11	84 1.38	76	76	104	126 2.07	126 2.07	2.15		
eral con		Corbon- ofe (CO ₃)	2 0.07	2 0.07	0.00		0.00	0.00	0.00	0.07	1 0.03	2 0.07	4 0.13	3		
W		Potas- sium (X)								1.1				1.3 0.03		
		Sodium (No)	9.8	8.5	5.9		6.6	6.5	6.7	6.5	0.33	8.4	8.5 0.37	9.1		
		Magne- sium (Mg)								3.3				6.6	 	
		Calcium (Co)	2.30	2.04°	98.0		1.20	1.56	1.44	23.	1.88	2.30	2.36°	10.		
L	_	F alb	7.8	7.6	7.3		7.4	8.0	8.0	8.5	8.3	88.4	8.5	8.3		_
	Specific	conductonce (micromhos of 25°C)	592	239	115		149	181	174	169	217	257	792	281		
			100	100	8		88	8	88	96	93	130	118	107	_	
		Disso oxy oxy	10.0	10.6	10.7		10.5	10.0	10.0	9.6	9.5	11.5	10.4	10.5		
		Te and	09	55	51	sible	917	52	53	99	61	Ę	72	62		
		Dischorge Temp in cfs in OF	77	142	0024	Inaccessible	986	322	562	Est.	EST.	Est.	EST.	33		
		ond time sompled P.S.T.	49/41/01	11/5	12/3	1/65	2/11	3/9	4/13 1010	5/11 0930	6/8	7/21 1105	8/4 0111	9/22		

o Field pH.

b Laboratory pH.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water" c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Loboratories, i Minerol analyses made by United States Geological Survey, Quality of Water Branch (USGS);

NORTH COASTAL HEGION (NO. 1) MILL CREEK NEAR COVELO (STA. 5e)

		Anolyzed by i	USGS											
-		E I	us											
		Hordness bid - Coliform os CoCO ₃ ify MPN/mi					10	m	-10	m	CI			
-	Ţ	P C C E					15		25					
		Hordness os CoCO ₃ Totol N C.					94 1		-1	0	9			
-		sod - mul					13	11 141	13 131	11 140	13 166		_	
-	- TO	solids in ppm					9 ⊢1			94		_		
-	To						125			163				
		Other constituents d												
		Silico (SiO ₂)					13			15				
_	Illian	5					0:1	0:0	0.3	0.1	0.0			
millio	per million	Fluo- ride (F)												
ports per million	equivalents	Ni- trate (NO ₃)					0.05			0.03	0.02			
٩	equiv	Chlo- ride (CI)					2.4 0.07	4.3	3.6	0.11	4.4			
	Li S	Sul - fote (SO ₄)					0.35			13				
	constituents	Bicor- bonote (HCO ₃)					106	161	2.59	171 2.80	3.29			
	Minerol co	Corbon- ote (CO ₃)					4.0	5.0	00.00	0.00	4.0			
	M	Potos- sum (K)					0.03			1.0				
		Sodium (No)					6.0	8.1	8.7 0.38	8.3	11 0.48			
		Mogne- sium (Mg)					0.88			15				
		Colcium (Co)					20 1.00	2.82	2.62	31	3.32			
		E 010					8.8	8-1-8	8.1	0 0	8.5			
	Specific	(micramhos ot 25°C)					203	292	277	292	342			
		Dissolved of oxygen (Coppm %0.50t					76	77	85	101	80			
		Disso oxy ppm	~	red.	rd .	red.	11.4	4.8	0.6	9.5	6.2	mi	rel .	rd .
		Dischorge Temp in cfs in ⁰ F	Not Sampled	Not Sampled	Not Sampled	Not Sampled	717	- 50	52	- 62	80	Not Sampled	Not Sampled	Not Sampled
		Dote ond time sampled P.S.T.	10/64	11/	12/4	1/65	2/2	3/11	4/15 1100	5/13 0930	6/9	1/22	8/5	9/23

a Field pH.

b Loboratory pH.

c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Gealogical Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

OUTLET CREEK NEAR LONGVALE (STA. 5b)

	Analyzed by i	SS											
4	E E	SDSU											
	bid - Coiform" ity MPN/ml												
ļ Ž	- pid - ity in ppm		7	10		15	-	000	m			п	
	Hordness as CaCO ₃ Total N.C.	137 12	145 10	5 04		24 0	75 1	51 0	0 92	0 26	121 0	134 2	1142
	sod - as Co						18	18	19	18	18	21 1	82
itol p,	solved so solids in spm	21	54	25		18		7	113f 1	-		- CU	1976
٩	كتنف		-										
	Other constituents					Po _{1,} 0.05			ABS 0.0 As 0.00 PO _{\(\psi\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}				ABS 0.0 As 0.00 PO ₄ 0.01
	Silica (SiO ₂)			·		<u></u>			113 A				8.
uoi	5	2.5	3.6	2.0		0.2	4.0	0.1	7.0	9.0	1.2	1.9	0.00
millian per million	Fluo- ride (F)												
1 20 1	_					0.05			1.2				00.00
ports p	Chio- ride (CI)	06.0	30	3.5		0.08	6.2	2.4 0.07	5.4	7.6	14 0.39	24	0.73
	Sul - fote (SO ₄)	0	Mo_			0	<u> </u>	<u>"</u> 0	0.17	10	174	<u>_0 0</u>	0.21 0
	Bicor-S bonate ((HCO ₃) ((2.39	161	146 0.75		80.1	90	62	92	1.37	137 2.25	147 2.41	2.62
constituents	Carbon-Bi ate (CO ₃) (H												
Mineral	S E	0.10	2 0.07	000	_	000	000	00.0	2 0.07	20.07	0.20	7.0.23	0000
	Potas- sium (K)			uls		- mlm	- امام		0.00	alm.	lou		10:00
	Sodium (No)	17 0.74	21 0.91	6.1		5.3	7.6	0.22	8.0	9.9	12 0.52	16 0.70	0.65
	Mogne Sium (Mg)								5.7			υ.	13
	Calcium Mogne- (Ca) Sium (Mg)	2.74	2.90	0.81		1.08	1.50	1.02	21	1.90	27.2	2.68	36
	E alo	88.8		7.9		7.4	8.0	7.4	8.5	808	88	9.6	8.1
1	conductance (micromhas at 25°C)	346	384	109		128	181	123	182	223	285	327	34.3
		66	111	26			93	83	98	130	98	8	8
	Dissolved oxygen ppm %Sol	9.5	10.9	10.7	0)		10.2	9.5	8.7	11.0	4.00	8.0	m œ
	Temp in oF	1 19	59	9†	Inaccessible	64	20	64	89	73	72	72	9
	Discharge Temp			099	Inacce		73	505	19	ήZ	1.5	€.	0.
	Date and time sompled P.S.T.	10/15/64 1015	11/6	12/4	1/65	2/2	3/11	4/15 0945	5/13	6/9	7/22	8/5 0740	9/23 0830

o Field pH.

b Laboratory pH.

c. Sum of colcium and magnesium in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water".

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determination.

NORTH COASTAL REGION (NO. 1) REDWOOD CREEK AT ORICK (STA. 3b)

	Anolyzad by i	USGS											
	bid - Coliform ity MPN/ml												
Į.	bid - ity In ppm	H	m	550		260	55	150	55	9	н	'д	m
	N OO	2	13	5		9	10	11	6	13	15	13	13
		09	7.7	25		7 5	- 28	50	59	74	78	84	
-	g sod -	16	13	27		13	15	27	2	77	12	12	1
Totol	solved solved solids in ppm								87 [£]				108f
	Other constituents d								ABS 0.0 As 0.00 PO ₁ 0.10				PO _{1,} 0.03 As 0.00
	Silico (SiO ₂)	_ 1				-1	-1	_1	7.6			_1	9
million per million	Baron (B)	0.0	0.1	0.2		0.0	0.0	0.0	0:0	ं।	0.0	0.0	0.1
per r	Fluo- ride (F)												
ports per million equivolents per mill	Ni- trote (NO ₃)								1.0				9.0
equiv	Chlo- ride (Ct)	6.0	4.7	1.8		2.5	2.4 0.07	2.8	3.8	3.9	5.2	6.0	0.18
ni s	Sul - fote (SO ₄)								0.0				0.33
constituents	Bicar- bonate (HCO ₃)	67 1.10	1.21	24 0.39		48 0.79	59 0.97	60	00.1	1.21	82 1.34	86 1.41	78 1.25
Mineral con	Corbon- ote (CO ₃)	00.00	00.00	0.00		00.00	00.00	00.00	00.0	00.00	1 0.03	0.00	00.0
Mın	Potos- Sium (K)								0.0				20.00
	Sodium (No)	5.2	5.2	2.9		3.2	3.7	3.8	3.8	0.20	5.6	5.5	0.25
	Mogne- Slum (Mg)								2.2				0.19
	Colcium (Co)	1.20	1.48	05.0		06.0	1.16	1.20	20	1.48	1.68	1.63	1.35
	E ala	7.2	2.1	7.4		7.2	7.5	7.5	7.4	4.6	0.1 1.0	1.0	alic
Specific	conductonce (micromhos at 25°C)	145	175	99		106	136	136	136	168	1,90	192	181
1	151	98	96	984		77	8	87	%	95	76	87	88
	Dissolved oxygen ppm %S	80.00	10.0	9.3		8.9	10.6	7.6	9.5	4.6	9.5	8.6	7.80
	Temp in oF	58	57	52	ssible	1,3	52	51	49	58	69	61	65
	Dischorge Temp	19	68	0666	Inaccessibl	706	410	430	585	160	24	25	ਹੈ ਹੈ
	ond time sompled P.S.T.	10/12/64	11/3	12/2 1120	1/65	2/10	3/9	1,714	-71-	6/7	7/20	8/3	9/21 1300

a Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

TABLE D-2 (Continued)
ANALYSES OF SURFACE WATER SALMON RIVER AT SOMESBAR (STA. 2a) NORTH COASTAL REGION (NO. 1)

	Anolyzed by i	USGS												
	Hordness bid Coliformh A os CoCO ₃ ity MPN/mi													
-	F Col	-							15					
-	000 N.C.								CI CI					
									38					
	L Pos								6					
Total	solids in ppm								51 [£]				110 f	l
	Other constituents d								ABS 0.0 As 0.00 PO ₁ 0.04				ABS 0.0 As 0.00 Po _t 0.04	
	Sifica (SiO ₂)								12				16	
Hion	Boron (B)								0:0				0.0	
million per million	Fluo- ride (F)													
ports per million equivalents per mill	1 _								1.0				0.02	
e quive	Chlo- ride (CI)						-		0.0				0.00	
.5	Sul - fote (SO ₄)								3.0				7.0	
constituents	Bicor- bonote (HCO ₃)								44				95 1.56	
Mineral con	Carbon- ote (CO ₃)								00.00				0.00	
Min	Potas- Sium (K)						•		0.08				0.05	
	Sodium (No)							-	0.08				3.8	
	Mogne- sium (Mg)								0.15				3.5	
	Colcium (Co)								12.				27	
	Z alo								4.7				0 00 0 00	
Specific	conductonce (micromhos								83				177	
	olved (r								95				102	
	Oiss ox mqq								10.2				9.6	
	Temp in OF	led	led	gled	led	led	gled	pled	53	led	pled	pled	11 9	
	Dischorge Temp in cfs in OF	Not Sampled	2800	Not Sampled	Not Sampled	Not Sampled	174							
	Dote ond time sompled P.S.T.	10/64	11/	12/	1/65	2/	3/	/11	5/10	/9	/1	8/	9/20	

a Field pH.

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Heavy metals reported in table of "Spectragraphic Analyses of Surface Water".

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

Grovimetric determination.

h Annuol medion and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

-72-

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (No. 1) TABLE D-2 (Continued)

SCOTT RIVER NEAR FORT JONES (STA. 1b)

	Anolyzed by i		USGS											
	MPN/ml		Medium 9.1	Maximum 230	Minimum 0.13									
,	- bid - ti mpgn			m	4	047	740	15	10	10	<i>-</i> #	co	-	н
	-0 -	E dd	0	ч	-		5	0	m	0	0	m	C)	0
L.		E dd	142	141	87	16	%	8	80	192	82	141	148	145
	00 m		<u></u>	_	00	00	00	6	6	52	<u>-</u>	_	<u></u>	∞
Total	dis- solved solids in ppm									285f				1684
	Other constituents									ABS 0.0 As 0.01 Po ₄ 0.45				ABS 0.0 AS 0.00
	n Silico (SiO ₂)	4								04				19
lion	- Boron		0	0.0	0.1	0.0	0:0	0:0	0.0	7.0	0:	0.0	0.0	0
per p	3.50	-							<u>.</u>					
ports per million equivolents per mil	rote d									0.02				2.1
inge	0 -	\dashv	3.8	0.0	0.06	0.03	0.03	0.03	0.03	16	1.9	3.5	4.4	3.7
5	Sul - fote									9.0				0.8
stituent	Bicar- bonote	(Engul)	162	165 270	105	110	109	110	104	254	1.54	168	164	17th 2 - 85
Mineral constituents	Corbon	16031	0.20	3 0.10	0000	00.00	0.03	0.00	0.0	10	4 0.13	00.00	7.0.23	2.00.00T
N N	Potas-	(W)								2.3				8.0.0
	Sodium (No)		5.4	5.1	3.7	3.6	3.8	3.9	3.8	30	3.1	0.20	5.4	0.26
	Mogne-	(fin)								15				1.35
	Colcium (Co)		2.84	28.2	1.74	1.82	1.92	1.80	1.70	52 2.59	1.64	2.82	2.96	1.55
	돌하	o	8.3	7.9	8.2	8.2	8.3	3.5	8.0	88.2	7.7	8 8	8.1	0.7.
	conductonce (micromhos		291	277	187	187	186	181	179	452	174	281	290	292
		% SQ1	126	88	88	18	47	78	85	%	97	124	134	16
		mdd	10.8	9.5	10.6	7.6	8.3	6.8	8.8	9.6	0.6	9.7	10.5	7.11
	ea o e o e		99	64	97	42	73	877	50	75	59	75	77	69
	Dischorge in cfs		53	112	312	2650	5200	1020	700	1340	588	125	76	رب س
	Dote ond time sompled	7.3.1.	10/5/64	11/10	12/7	1/12/65	2/2 1500	3/2	4/6 1520	5/3	6/14	7/14	8/10 1500	9/1 ⁴ 1515

o Field pH.

b Loborotory pH.

c. Sum of calcium and magnesium in epm. d. Heovy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

SHASTA RIVER NEAR YREKA (STA. 1a) NORTH COASTAL REGION (NO. 1)

	Anolyzed by i	USGS											
	Hordness bid - Coliformh A os CoCO3 Ity MPN/ml	Median 1	Maximum 2400	Minimum 5.0									
-	7 - Y- Edg	1 6 M	1 Z 0/	7 T	20	10		16	10	10	m	cv .	N
	8 0 X	₩aa o	0	0	0	0	0	0	0	0	0	0	0
	Hordness os CoCO ₃ Total N.C.	216	205	196	187	190	191	230	192	525	231	234	5256
	Cent Cent ind	29	33	31	23	R	25	35	25	28	27	62	28
2 2 2	solids in ppm								285 f				360 £
	Other constituents d								ABS 0.0 AS 0.01 PO ₄ 0.45				ABS 0.0 PO ₄ 0.18
	Silico (SiO ₂)								위				2
e le	5	0.4	0.5	7.0	0.4	0.3	0.4	6.0	0.4	0.5	0.5	9.0	9:0
mullion million	Fluo- ride (F)												
ports per million									1.1	-			
po	Chlo-	26	29.0	24	15	13 0.37	17	26	16	26	25	26	0.73
<u> </u>	Sul - fore (SO.)								9.0				0.17
Mineral constituents	Bicar- bonate (HCO ₃)	291	762	264	247 4.05	3.92	256	340	254	280	304	304	5.15
ral cons	Corban- afe (CO3)	\neg	0.33	0.53	8	0.33	8	0.33	0.33	26 0.87	0.60	22 0.73	0.43
Mine	Potos- C Sium (K)		,-	.,,0					0.00	-		.,,,	0.08
	Sodium (No)	41 1.78	2.00	1.74	26	25	30	56	30	1.74	40	43	1.83 1.83
	Mogne- muis (M)								1.25				2.92
	Calcium (Ca)	4.32 c	0T-1	3.92	3.74	3.80	3.82	09.4	52 c 2.59	4.58	4.62	g 89° t	1.00
	¥ 81.0		8.5	800	2000	8.6	21.2	00 00 00 00	8 8	7 80	0 00 0 00	4.8	ωω ωνο
	conductance (micromhos	562	584	515	044	421	994	919	452	561	595	578	567
		76	66	86	92	92	779	69	8'	92	%	76	102
	Dissolved oxygen	9.5	11.1	10.9	9.5	8.8	7.3	9.7	9.6	6.8	7.3	0.8	6.9
	Temp in oF	58	45	977	04	43	77	1:1	54	179	68	89	62
	Dischorge Temp	112	188	196	076	510	314	664	141	141	69	43	8
	ond time sampled P.S.T.	10/6/64	11/11	12/8	1/13/65	2/3 0845	3/3	0480	5/4 0735	6/15	7/14	8/11	9/15 0830

a Field pH.

b Loboratory pH.

c. Sum of calcium and magnessum in epm. d. Heavy metals reported in table of "Spectrographic Anolyses of Surface Water"

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

SMITH RIVER NEAR CRESCENT CITY (STA. 3a)

	Analyzad by i		USGS											
	bid - Coliform A		Median 1 15	Maximum 50	Minimum 0.23									
-	- Pi Thy Ppm ₹		1 Me	1 Ma	35 Mi		20	04	12	30	15	m	1	н
	CO3	m d d	N	ري د	7		CI CI	-1	2	CI CI	-	-3	<u>۸</u>	t-
		200	77	65	38		45	52	55	5,4	29	83	88	%
	od -		00	ω	10		0,	10	00	∞	<u></u>	00	7	~
Total	solved solids in pom									63 f				101.
	Other constituents									ABS 0.0 As 0.00 Po _b 0.10				ABS 0.0 As 0.00
	Silica (SiO ₂)									13				13
llion	Boron Silica (B) (SiO ₂)		0	0.1	0.0		0.1	0.0	0.0	0.0	0.0	0.0	0:0	0,0
million per million	Fluo-													
m	Ni-	(MO3)								1.7				0.02
gorts pe	Chla-	[2]	0.08	2.5 0.07	1.4		1.8	1.4	20.0	1.7	2.1	215	8.0	888
C1	Sul - fote	(504)							-	0.08				0.17
constituents	Bicor- bonofe	18 CO.	1.38	1.20	45 <u>0.69</u>	-	52 0.85	1.02	1.07	64	1.26	91 1.49	1.62	1.72
	Carbon-	T	00.0	00.0	00.0		000	00.00	0000	00.00	00.00	2 0.07	1 0.03	0.07
Mineral	Potas- C	\dashv			_					0.03				6.00
	Sodium (No)		0.13	0.12	0.08		0.00	2.6	2.2	2.1	2.4	3.5	3.2	0.14
	Magne- S	(gw)								0.86				1.07
	Calcium (Co)		1.42 c	1.30	° 97.0		06.0	1.04 c	1.10	8.4	1.34	1.64	1.76	0.85
	F ala		8.1	7.5	7.3		2.5	843	9.0	8.0.8	0/0	88.1	00 00 m	0.00 1.14.
Specific	(micromhos at 25°C)		146	133	81		95	110	113	113	137	167	177	193
		70207	105	8	105		87	101	11	98	100	100	68	8
	0 5 1	Egg	10.3	10.2	11.8		10.8	9.11	9.1	8.6	10.3	9.6	8.9	8.0
	in or		62	55	51	sible	143	617	24	09	58	179	99	9
	Discharge Temp in cfs in oF		176	298	25000	Inaccessible	3270	1970	1680	1400	780	345	295	550
	some time	7.3.1.	10/15/64	11/4	12/2	1/65	2/10	3/9	4/13 1745	5/11	6/8 0745	7/20	8/3 1015	9/21

a Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d. Heavy metals reparted in table of "Spectragraphic Analyses of Surface Water".

e. Derived from conductivity vs TDS curves.

g Gravimetric determination.

f Determined by addition of analyzed constituents.

h Annual median and range, respectively. Colculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

TABLE D-2 (Continued)
ANALYSES OF SURFACE WATER
NORTH COASTAL REGION (NO. 1)

THINTY RIVER NEAR BURNT RANCH (Sta. 4b)

	Analyzed by î	USGS												
-	E E	ns												-
	bid - Coliform" 11y MPN/ml													
T of	- pid - ty mdd u	-1		55		30	15	- 2	5	m		N	N	
	N COS		_	~		m			CV	CI CI	0	N	m	4
		70	73	7,2		75	75	78	68	20	63	70		4
4	D S E	27	13	12		0,	<u> </u>	10	0,	7	7	27	I I	4
Toto	pevios pevios spilos mudo ci								82f				H 86	
	Other constituents	PO ₄ 0.00	PO ₄ 0.05	Po _{t,} <u>0.1</u> 0		PO ₁ 0.05	PO4 0.05	$\mathrm{PO}_{\mathrm{l}_{\mathrm{l}}}$ 0.10	ABS 0.0 As 0.00 PO ₁ 0.05	Po ₄ 0.15	PO1 0.05	Po _{1, 0.00}	PO ₄ 0.00 As 0.00	
	Sifica (SiO ₂)								77				a	
on iiiion	Baron (B)	0.0	0.1	0.2		딩	0.0	0.0	0.0	0.0	0.2	0.0	10	
r million per million	Fluo- ride (F)													
parts per million equivalents per mill	NI- trate (NO ₃)	0.0	0.0	1.5		1.4	0.9	0.0	0.03	0.05	0.03	0.03	0.00	
equiva	Chlo- ride (CI)	6.4	6.5	1.4		0.03	0.05	2.9	2.4	0.00	3.8	5.3	0.17	
Ē	Sul - fate (SO ₄)								5.0				0.10	
constituents	Bicar- banate (HCO ₃)	80	80	45.0		82 1.34	386	89	80	58	1.26	83	1.48	
Mineral con	Carban- ote (CO ₃)	00.00	0.00	00.00		2 0.07	0.00	00.00	00.00	0.00	0.00	0.00	00:00	
M.	Potas- sium (K)								0.02				0.02	
	Sodium (No)	4.7	5.1	2.6		3.3	3.5	4.0	3.2	0.12	0.18	0.50	7.4.0 02.0	
	Magne- sium (Mg)								5.0				9.94	
	Calcium (Ca)	07.1	o 94.1	0.83		1.50	1.50	1.56	26.0	1.00	1.26	1.40 c	20 1.00	
	T ala	ω 0.0	8.2	7.3		0.3	8.1	8.1	8.0	8.00	8 8 1 N	88	© 60 00 00 00 00 00 00 00 00 00 00 00 00	
Specific	conductance (micramhos at 25°C)	158	165	%		156	159	165	145	107	141	157	171	
		100	100	66		91	88	78	100	86	93	105	%	
	Dissolved axygen ppm %Sa	7.6	10.7	11.5		0.11	10.0	0.6	10.2	9.1	9.5	0.6	5.6	
		09	53 1	1 94	sible	1,3	L 74	52	26 1	79	59	72	65	
	Discharge Temp in cfs in oF	270	650	0109	Inaccessible	5600	est. 1100	1020	1360	0611	400 400	300	0000	
	and time sampled P.S.T.	10/13/64	11/3	12/1	1/65	2/8 1045	3/8 1045	4/12 1115	-76:	6/7	7/19	8/2 1030	1000	

a Field pH.

b Laboratary pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reparted in table of "Spectragraphic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated fram analyses of duplicate manthly samples made by California Department of Public Health, Division of Labarataries, i Mineral analyses made by United States Gealagical Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

TRINITY RIVER NEAR HOOPA (STA. 4)

		Anolyzed by i	nsgs											
	2	bid - Caliform ily MPN/ml In ppm	Median 219	Maximum 620	Minimum 2.3									
	Tur-	bid - ity in opm	7	7	160		170	100	740	70	30	47	N	н
		2000 N CO 3	77	91			0	4	9	cv.	77	٦	9	∞
			96	88	95		77	877	98	88	78	8	109	131
	Per	80d -	10	12	0		ω	ω	0	~	70	6	ω	-
	Total	solids in pom								100				149 £
		Other constituents	PO ₄ 0.00	Po4 0.05	PO4 0.15		PO1, 0.00	PO ₄ 0.10	PO ₄ 0.10	ABS 0.0 As 0.00 PO ₄ 0.00		PO ₄ 0.10	PO _{1, 0.05}	ABS 0.0 As 0.00 PO ₁ 0.08
		Silica (SiO ₂)						_		15				16
	lion	Boron (8)	0.0	0.1	0.3		0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
million	per million	Fluo- ride (F)												
ports per million	equivalents p	Ni- trote (NO ₃)	0.00	0.05	0.03		0.05	0.0	0.8	0.03		0.03	2.4	0.00
0	equiv	Chlo- ride (CI)	6.2	7.8	0.05		000	0.03	0.00	0.05	0.00	3.6	4.4	0.14
- 1	ē	Sul - fote (SO ₄)								0.10				0.27
	canstituents	Bicar- banate (HCO ₃)	105	1.56	96.0		87 1.43	1.49	1.61	35	86	112	1.93	150 2.46
	Mineral car	Carbon- oie (CO ₃)	00.00	0.00	0.00		20.07	0.10	000	0.03	0.03	4 0.13	4 0.13	0000
	Ψ.	Patos- sium (K)								0.3				0.02
		Sodium (Na)	0.21	5.3	2.5		2.9	3.2	3.8	3.0	3.7	4.7	0.50	0.21
		Magne- sium (Mg)		- 10				. 10		7.8				0,42
		Colcium (Co)	2.80	o 1.76	1.12		0 1.49	2.68	1.72°	200	1.52°	1.98	2.18	5-20 2-20
		PH Th	8.8	8.1.8	7.6		7.5	8.3	8.0	7.8 8.5	0 2	7.7	8.5	8.20
	Specific	canductance (micramhos at 25°C)	196	198	120		155	170	176	168	160	214	524	564
		1 6 1	105	101	8		95	89	91	97	93	102	%	&
		Disso	10.2	10.7	11.0	4	11.5	10.3	8.6	6.6	9.6	8.00	4.8	0,
		Teno in aF	29	55	84	ssibl	77	84	53	28	99	73	7	69
		Oischarge Temp in cfs in aF	1436	1110	17800	Inaccessibl	9500	2850	2980	3250	3800	940	920	120 120
		and time sampled P.S.T.	10/13/64	11/3	12/1	1/65	2/8 1230	3/8	4/12 1555	5/10	6/7	7/19	8/2 1225	9/20 1600

a Field pH.

b Labaratory pH.

c. Sum of calcium and magnessum in epm. d. Heavy metals reparted in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Colculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Loboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER NOFTH COASTAL REGION (NO.1) TRINITY RIVER AT LEWISTON (STA. $\hbar a$) TABLE D-2 (Continued)

	Pez														
	Anolyzed by i	USGS													
	os CoCO ₃ ity MPN/ml Total N.C. ppm														
Į.	- piq it, uppm	Ч	Н	н		100	30	50	50	35	07	15	10		
	oCO ₃ N.C.		0	н		0	0	Н	0	m			CI		
		71	£43	ተተ		\$\frac{1}{2}	77	43	7,2	£ [‡]	75	24	2 ₄	 	
9	sod -	10	6	12		7	=	10	0,	0,	12	11	f 11	 	
Totol	solids solids In ppm								62 f				61		
	Other constituents	PO ₄ 0.00	PO _{1, 0.05}	PO ₁ 0.05		PO ₁₁ 0.05	PO ₄ 0.10	PO ₄ 0.10	ABS 0.0 As 0.00 PO ₁ 0.00	PO1, 0.05	PO _{1, 0.20}	PO ₁₁ 0.00	ABS 0.0 As 0.00 Pol ₁ 0.05		
	Silico (SiO ₂)								13				12		
llion	Boron (B)	0.0	0.0	0.1		0.0	0.0	5.0	0.0	0.1	0:0	0.0	0.0		
per million	Fluo- ride (F)														
5 I	rrate (NO ₃)	0.0	1.0	0.0		0.03	0.05	0.8	0.0	0.0	0.02	0.03	1.1		
equivolents	Chlo- ride (CI)	1.3	0.08	0.02		0.0	0.02	0.0	1.1	0.03	0.03	1.3	0.03		
. <u>=</u>	Sul - fote (SO ₄)								0.02				0.04		
constituents	Bicor- bonate (HCO ₃)	52 0.85	53	52 0.85		51 0.84	51,	51 0.84	52 0.85	08.0	50 0.82	50.82	08.0	 	
	Carbon- ote (CO ₃)	0.00	00.00	00.00		00.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00		
Minerol	Potos- Sium (K)								0.5				0.5		
	Sodium (No)	2.3	0.00	0.12		0.10	0.10	2.3	2.0	2.1	2.6	2.2	2.2		
	Mogne- sium (Mg)								6.1				0.23		
	Colcium (Co)	388.0	38.0	0.88		0.85	0.85	3.86	7.0	0.86	0.84	0.84	12		
	H alo	7.7	7.10	8.0		7.2	7.9	7.3	7.6	7.5	7.6	7.7	7.6		
Specific	conductonce (micromhos of 25°C)	95	93	`8.		91	91	95	06	89	96	68	90		
		66	101	8,		85	78	98	96	76	80	86	87		
	Dissolved oxygen ppm %So	10.9	11.2	0.11		7.6	6.8	10.9	10.4	10.5	10.4	9.01	10.0		
		L Tu	L T	94	ssible	145	542	14	64	67	20	6#	44		
	Dischorge Temp in cfs in 0F	205	257	254	Inaccessibl	159	155	170	164	991	157	157	157		
	Dote ond time sompled P.S.T.	10/13	11/3	12/1 0850	1/65	2/8	3/8	4/12	5/10	6/7	7/19	8/2 0815	9/20		

b Loborotory pH.

c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents.

d Heovy metals reported in table of "Spectragraphic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); Gravimetric determinotion.

NORTH COASTAL REGION (NO. 1)

VAN DUZEN RIVER NEAR BRIDGEVILLE (STA. 5a)

	Analyzed by i	USGS												
,	A/mi		mum m	um w										
,	bid - Coliform ⁿ ity n ppm MPN/ml	Median 22	Maximum 62	Minimum 2.3										
F-	Pid C			540		500	07	200	7,0	9			-	
	As CaCO ₃ as CaCO ₃ ppm ppm	118 7	99 15	9 1717		64 2	76 10	9 29	8 44 5	111 6	141 11	144 11	162	
	- pog	ET.	Ħ	0		77	11	11	10	10	9	7	S	
Total	solved solved in ppm								107f				204 F	
	Other constituents d								ABS 0.0 As 0.00 Po $_{l_1}$				PO ₄ 0.00 As 0.00	
	Silica (SiO ₂)								6.3				T T	
llion	Boron (B)	0.2	0.1	0.0		0.0	0.0	0.2	0.1	0.1	0.1	0.1	0.0	
per million	Fluo- ride (F)													
5	Ni- trate (NO ₃)								1.1				0.00	
equivalents	Chlo- ride (Cl)	4.6	2.8	0.0		0.03	0.0	0.03	1.4	0.05	3.4	3.8	4.4 0.12	
. uı	Sul - fote (SO ₄)								12 0.25				0.62 0.62 0.03 0.03	
constituents	Bicor- bonate (HCO ₃)	125 2.05	103	46		1.25	80	74	96	250	139	2.43	2.66	
	Corbon- ate (CO ₃)	5.17	00.00	00.0		00.00	0.00	00	000	0.10	10	0.23	0.23	
Mineral	Potas- C Sium (K)								0.0				0.0	_
	Sodium P (Na)	8.0	5.5	2.0		3.6	4.4	4.0 0.17	0.18	92.0	0.33	0.36	0.638 0.43	
	Magne- sium (Mg)								4.6 0.38				01.84	
	Colcium (Co)	2.36	86.1	0.87		, 82.I	1.51	1.34 c	26	2.22	2.82	2.88	2.40	
	PIS PH	0 80	0.00	7.8		20.0	0.00	2.5	8.0	000	000	000	0 to 0.0	
Somethic	conductance (micromhos at 25°C)	259	216	%		140	164	145	181	232	295	303	338	
		105	%	95		81	ま	93	66	75	100	100	8	
	Dissolved oxygen ppm %Sq	6.6	9.8	10.5	Je	7.6	10.0	10.3	9.3	7.6	8.7	8.5		
	To or	65	54	51	cessible	517	57	51	69	58	72	77	61	
	Dischorge Temp in cfs in oF	0.6	17	5470	Inac	086	300	764	est.	est.	est.	est. 19	est.	
	Date ond time sampled P. S.T.	10/14/64	11/4 1540	12/2 1545	1/65	2/9	3/8 1740	4/13 1410	5/11	6/9	7/21 0845	8/h 0840	9/21 1600	

o Field pH.

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h. Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, i. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

ANALYSES OF SURFACE WATER
NORTH COASTAL REGION (NO. 1)
WILLIAMS CREEK NEAR COVELO (STA. 5f)

	Anolyzed by i		uses										
	bid - Coliform ity MPN/ml			7		0	+	-	5	CI CI		0	
1	# P OE		3	1 7		14 30	7 7	7 30	2	6	8	9	
	Hordness os CoCO ₃ Total N.C. ppm ppm		140 18	20 1		18 1	99	19		100	152 {	145 (-
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 17	11		7 77		01	6	9 1	9	7	68 177
loto	solved solved ln ppm		160 ^f	69		634			90 [£]				202f
	Other constituents												
	Sifica (SiO ₂)		1.6			80			7				13
on	- Boron (B)		0.2	0.0		0.0	0.0	0.2	0.0	0.0	0.2	0.1	0.0
ports per million equivolents per million	Fluo- ride (F)		0.1	0.5							0		
ports p	Ni- trote (NO ₃)		0.5	0.8		0.00	0.00	2.0	1.1	0.02	0.02	1.6	0.00
equi	Chlo- ride (Cf)		1.6	0.4		0.4	0.0	0.0	0.0	0.03	0.03	1.5	1.8
NI S	Sul – fate (SO ₄)		31	8.0		7.0			11 0.23				19 0.40
Mineral constituents	Bicar- bonate (HCO ₃)		2.25	56.0		54 0.89	72	69	84	107	160 2.62	159	3.15
serol co	Corbon- ote (CO ₃)		0.20	00.00		00.00	0.00	00.00	00.00	2 0.07	8 0.27	5.17	6
Min	Potos- sium (K)		0.02	0.0		0.02			0.5				1.3
	Sodium (Na)		5.7	6.7		2.8	2.6	3.4	3.3	4.6	0.21	4.9	6.0
	Magne- sium (Mg)		13	0,10		4.4			6.3				19
	Colcium (Ca)		35 c 1.75	12 0.60		12 0.60	1.32	1.28	19	2.00	3.04	2.90	39
	ماه ج		8.3	4.0		7.9	7.6	7.7	8.1	8.0	8.3	8 8	88.3
Soecific	conductance (micromhos of 25°C)		288	111		102	139	141	157	203	295	586	343
	Dissolved oxygen ppm %Sat		113	66		101	16	82	%	89	119	125	122
	Diss		11.6	11.4		11.9	9.8	9.1	9.3	7.2	9.5	10.3	10.0
	Ten of in of	palder	57	45	paldus	43	20	7,8	59	75	#	7.7	47
	Discharge Temp	Not Sampled			Not San								
	ond time sompled P.S.T.	10/64	11/6	12/4	1/65	2/2 1000	3/11	4/15	5/13	6/9 1625	7/22	8/5	9/23

a Field pH.

b Loboratory pH.

c Sum of colcium and magnesium in epm.

d Heavy metals reparted in table of "Spectrographic Analyses of Surface Water".

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS);

TABLE D-3 ANALYSES OF TRACE ELEMENTS IN SURFACE WATER

	ပ္	2	*		-1-	ale ele	ale et	4	ale ele	a		. *				
	m Zinc	(Zn)	5.7	5.7*		13 * 5.7*	13 *	13 *	13 *	* * *	* 51	13 * 0.57*				
	Titanium Vanadium	(\$	*62.0	*62.0	*65.0	12 8.3	6.6	6 m	4.8	11 0.29*	*19.0	0.29*				
	Titanıum	(Ti)	0.57*	0.57*	*15.0	1.3 *	1.3*	1.3**	1.3*	1.3*	1.3**	1.3*				
	Lead	(Pb)	1.4*	1.4*	7.4*	3.3*	3.3	3.3*		3.3*	3.3*	3.3* 1.4*				
	Nickel	(Ni)	9.0	1.2	1.2*	0.93	3.5	17	3.0	1.4	**19.0	0.00				
	Molyb-	(Ma)	*62.0	3.4	7.4*	0.67**	17,	0.67**	0.67**	0.67**	*29.0	0.67**		 		
	<u> </u>	(Mn)	1.4*	*7-7	1.4*	3.3*	3.3*	3.3*	3.3*	3.3*	3.3*	1.4*	 	 •		
r billion	Η.	(Ge)	*63.0	*62.0	*65.0	0.67* 0.29*	*62.0	0.67*	0.67*	*62.0	*29.0	0.67*	 		<u> </u>	
parts pe	Gallium G	(09)	5.7*	5.7*	0	1.3*	13 * 0	13 * 0	13 * 0	13 * 0	13 * 0	13 * 0.5.7*				
Constituents in parts per	lron G	(Fe)	42	15	44	97 04	73 1 2860	43 2860	83 24	22 889	10 1	27 10	 			
Constit	Capper	(Cu)	*1.1	*7.1	*†•'t	3.3*	3.3*	3.3*	3.3*	3.3* 1.4*	3.3*	3.3*	 	 		
	Chra- C	(Cr)	1.4*	1.4*	7.7*	3.3*	3.3*	3.3*	3.3*	3.3*	3.3*	3.3* 1.1*				
	Cobalt	(co)	7.4*	1.4*	1.4*	3.3*	3.3*	3.3*	3.3*	*	3.3*	1.4 1.4 1.4				
		(PD)	7.4*	1.4*		3°3* L°4*	3.3*	3.3*	3.3*	3.3*	3.3*	3.3*				
	Bismuth Cadmium	(Bi)	*62.0	*62.0	*62.0	* 4.0	0.67*	0.67*	0.67*	0.67*	*29.0	0.67*				
	Beryl-	(Be)	*25.0	0.57*			1.3 *		1.3 *							
	 	(A1)	9.6	9.1	7.7*	19.8	35	17 6.3	21. 8.9	1.4*		1.04*				
	Date ,		9-23	9-23	9-52	5- 4 9-15	5-12	5-10	5- 4 9-15	5-10	5-13	5-10 9-20				
	Sta.		- 5g	5c	9	7	m	28	82	68	25	4				
Station			Eel River near Dos Rios	Eel River, Middle Fork at Dos Rios	Eel River at Scotia	Klamath River below Iron Gate Dam	Klamath River near Klamath	Klamath River at Orleans	Klamath River near Seiad Valley	Mad River near Arcata	Outlet Creek near Longvale	Trinity River near Hoopa				

^{*} Fesults are less than the amount indicated ** Equal to, but slightly less than the amount indicated

APPENDIX E

GROUND WATER QUALITY

GROUND WATER QUALITY

The Ground Water Quality Data Program provides basic information on the quality characteristics of the State's ground waters. Data presented in this appendix are measured values of selected quality characteristics of ground waters in the North Coastal Area, as shown on the "Area Orientation Map". The Ground Water Quality Data Program is based on systematic sampling of a predetermined network and is reported annually by water year. The Ground Water Quality Data Program is performed in cooperation with local, and other state and federal agencies.

All data presented in this volume are within the North Coastal Water Quality Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Wells sampled in the Ground Water Quality Data Program are arranged by basin and tabulated in sequence by township, range, and section. The eleven ground water basins sampled during 1964-65 in the North Coastal Area are shown on Figure C-1 in Appendix C.

The Ground Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in milligrams per liter (mpl) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature in degrees Fahrenheit. Laboratory analyses of ground water

were performed in the Department's Chemical Laboratory at Bryte in accordance with "Standard Methods for the Examination of Water and Waste Water", Twelfth Edition; or by the U. S. Geological Survey (USGS) in accordance with "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454. The two methods yield comparable results.

During 1964-65, no ground waters in the North Coastal Area were analyzed for trace elements.

Well Numbering System

The state well numbering system used in this report is based on the township, range, and section subdivision of the United States Public Land Survey, and is described in more detail in Appendix C of this bulletin. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, is referred to as the State Well Number.

MINERAL ANALYSIS OF GROUND WATER

WELL				41 NE RAL		CONSTITUENTS	N 1 S.	MILLI	MILLIGRAMS PER LITER	PER LI	TER ER L	ER	MI	MILLIGHAMS	MS PER		
DATE LAB TIME SAMPLER	TEMP	LA8-PH FLD-PH	LAB-EC FLD-EC	CA	MG	4 Z	×	PERCE CO3	PERCENT REACTANCE 03 HC03 504	SD4	VALUE	N03	LL.	æ	5102	TUS	NCH
SMITH RIVER PLAIN																	
16N/01W-02001 H 09/22/65 5050 1630	-	8.1	223	}	1	.65	1	00	114	}	.31	1	1	1	1	!	4 0
16N/C1W-15C01 H 07/07/65 5050 1655		7 . &	48	-	1	. 28 8	1	00	3.39	}	. 28	2 . 4	1	1	}	1	23
16N/01W-17K02 H 09/16/65 5050 133C	1	7.0	282	6.3 .31	1.15	25 4 25	.03	00	960 40	3.6 .07	. 85 34	36 .58 23	1	0.		161	74
16N/01W-20A02 H 07/07/65 5050 1635		8.	288.	1		26	ł	00	. 64	1	23.05.05	48	ŀ		-	1	75
16N/01W-20H01 H 07/07/65 5050 1630	ł	7.9	177	-	-	.61	1	000	999	1	17	.31		1	1	ŀ	7 4 1
17N/01W-02G01 H 06/24/65 5050 1510	-	7.9	113	1	1	5.7	1	00	• 69	1	8 • 8 • 2 4	t	1	1	1	1	0 0
17N/01W-04J01 H 08/26/65 5050 1620	1	7.6	251	1	1	4 • 1 8 · 1 8	1	00	2,33	1	7.7	1	1	1	1	1	122
17N/01W-14C01 H 08/00/65 5050 1630	1	7.4	192	3.8	19 1 • 56 78	5 • 4 • 2 3 1 2	.02	000	99	0.5	9.0	. 05 3	1	0	1	114	8 6
18N/01W-05G01 H 07/07/65 5050 1515	1	7.4	177		1	10.	-	000	.23	1	E 60 .	• 19	1	1	1	1	29
18N/01W-17R01 H 09/10/65 5050 1505	_	8	228	17 •85 36	9 • 8 • 81 35	-65 -65 -28	.02	000	112 1.84 80	000	• 45 19	.02	1	0.	-	1140	83

TABLE E-I (Continued)
MINERAL ANALYSIS OF GROUND WATER

	I	06		۰ ٥	38	00	6	4	0	4 E
1 1	NCH	<u> </u>	111	117	m	1 8 0	148	304	229	n
	SUM	!		202		310		!	1	1
MS PER	5102	<u> </u>	ļ	1	1		!	1	4	1
MILLIGRAMS	B	+	1	0	1		1	1	1	2.0
Σ	F	}	1	1	!		-	1		د . د
ER	ND3	1	1	8.0 .13	1	6 • 1 • 10 2	1	1	1	
TER LITER	CL		1	1.6 .05	1	. 48 8	1	1	1	
PER LI	S04	1	+	. 50 18	1	522 9	1	1	1	1
MILLIGRAMS PER LITER MILLIEUUIVALENT PER LITER	PERCENI REACIANCE 03 HC03 S04	1		127 2.08 73	1	272		1	1	1
MILLI	CO3	I	1	2.0 .07 .07	1	41.		1	1	1
ITS IN	¥	}	}	4.1 .10	}	14.	1	1	1	
CDNSTITUENTS	A Z	8 • 3 • 3 • 3 • 3 • 4 • 4 • 4 • 4 • 4 • 4	33	. 44 15	30	1.91	1			240 10.44 1
	MG	9.7	1.22	1.40	1	31 2.55	1	1	1.63	
MINERAL	CA	20	20	19 95 33	1	24	1	1	2.94	}
	LAB-PH LAB-EC	210	326	261	215	526	360	534	533	961
	АН-РН LD-РН		1	4.0	į	φ •	1	1	1	-
	TEMP F		1	1	1	†	1	;	+	-
STATE WELL NUMBER		BUTTE VALLEY 45N/02#-01P01 U 08/11/65 5050 1030	46N/01w-17801 D 08/11/65 5350 1100	46N/02W-25K02 D 38/11/65 5050 1040	47N/01w-23H02 D 08/11/65 5050 1200	48N/01E-30N01 D 08/11/65 5050 1040 .	SHASTA VALLEY 42N/05#-20J01 D 08/11/65 5050 0830	42N/C6W-10J31 D 08/11/65 5050 C810	44N/C6W-22K01 D 08/11/65 505C 0710	45N/05W-06E01 D 08/10/65 5050 1410

MINERAL ANALYSIS OF GROUND WATER

1 1	I D		22	260	61	268	217	24		81	108	159
1 1	SUM			263	!	261	1	1		1	1	1
MS PER	S102		1	1	l	1	1	-		1	1	1
MILLIGRAMS	æ			:	1	:	1	ı		1	1	1
Σ	u.		1	1		1	1			1	1	-
ER	NOS		1	9.7	1	9.3 3.3	ŀ	1		1.4	l	.02
TER PER LIT	CL		1	10.4	1	2 • 8 • 08 1	1	1		2.9	1	. 50
PER LI	SO4		l	. 29	ŧ	4.8 .10	1	-		1	1	
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	DERCENT REACTANCE 03 HC03 504		-	295 4.84 91	1	302 4.95 88	1	1		1	1	1
MILLI	CO3		1	000	1	10 •33	1	1		-	1	
I S IN	¥		1	.03	1	0.4	1	1		1	1	-
CONSTITUENTS	A Z		1	4.8 .21 4	-	8 + 9 0 0 4	1	1		.31	1	.61
	₩.		1.1	32 2.63 48	3.9	2.63	2.24	. 0 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 •		9.4	1.01	• 99
MINERAL	V C		.35	2.59	. 90	54 2.69 48	2.10	9•1		. 85	23	2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·
	LAB-EC FLD-EC		5 5	452	131	. 459	397	80		184	238	352
	LAB-PH LAB-E		1	8.2	1	80	1	1		1	1	
	TEMP (1	60.0F	ł	55.0F	56.0F	1		63.0F	60.0F	58.0F
						u,	u,				<u> </u>	4)
WELL	DATE LAB TIME SAMPLER	אפוואו משערמ שוויסטפ	42N/C9W-27K01 D 08/10/65 5050 1120	43N/09W-02G01 D 08/10/65 5050 0950	43N/09W-08F01 D 08/10/65 5050 1140	43N/09W-24F01 D 08/10/65 5050 1145	43N/09W-24F02 D 08/10/65 5050 1150	43N/09W-28D02 D C8/10/65 5050 1025	HAYFORK VALLEY	31N/12W-12L01 D 08/12/65 5050 1045	31N/12W-15K01 D 08/12/65 5050 1145	32N/11W-35G01 D 08/12/65 5050 1005

TABLE E-I (Continued)
MINERAL ANALYSIS OF GROUND WATER

	NCH		130	108	249	57	188	184	0 0	0	0 0	
LITER	TOS		212	215	317	143	233	225	219	388	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
MS PER	5102		1	1	1	1	1	1	!	1	1	
MILLIGRAMS	8		:	0,	:	0.	0	•	•	r.	0	
M	ш		1	1	1	1	1	1	1		1	
ER	NO3		1 • 1	00.1	.00	9.5 15	.03	0.7	.02	2.8	2 • • • • • • • • • • • • • • • • • • •	
ITER PER LITER	VALUE CL		.76 .76	38	1.27	15 4 2 2 3	.37	.31	.34	92 2.59 36	.51 47	
MILLIGRAMS PER LITER MILLIEOUIVALENT PER	PERCENT REACTANCE		1.0	000	1.0	21 444 24	5.0	3.0	1.0	000	5.0 • 10 • 9	
GRAMS	NT REA		2.90	157 2.57 71	279 4.58 78	8 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	204 3.35 79	212 3.48 85	193 3•17 82	262 4•30 59	26 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
MILLI	PERCE CU3		6 • 0 • 20 5	000	000	1	.40	7.0	9.0	9 • 0 • 30	00000	
15 IN	ч		3 · 1 • 08 2	1.5	2.7	3.6 .09	1.2 .03	1.2	1.2	3.6	00.02	
CONSTITUENTS	¥ Z		1.31	32 1•39 39	.65	.61 .33	9.2	9 • 9 • 10	9.0	129 5•61 78	14 • 61 58	
	MG		1.56 39	1.15	33 2.71	7.2 .59 32	1.73	1.07	.90	.90 .13	1.7	
MINERAL	CA		20 1 • 00 25	20 1.00	2.30	. 55 30	2.00	52 2•59 63	2.50 65	12 •60 8	5.6 •28 27	
	LAB-EC FLD-EQ		371	351	539	207	379	365	345	721	123	
	LAB-PH FLD-PH		8.0	8•1	8.0	7.9	8 • 7	φ • •	8.6	8 .	7.6	
	L TEMP F		1	1	;	1	1	ŀ	1	1	1	
STATE WELL NUMBER	DATE LAB TIME SAMPLER	עהדדאז ממדום תאא	05N/01E-04H02 H 07/23/65 5050 1455	05N/01E-08J H 07/23/65 5050 1510	G6N/01E-07M01 H 07/23/65 5050 1152	06N/01E-08H01 H 07/23/65 5050 1435	C6N/01E-17D01 H 07/23/65 5050 1156	06N/01E-19001 H 07/23/65 5050 1145	06N/01E-30N01 H 07/23/65 50S0 1035	06N/01E-32F01 H 07/23/65 5050 1450	06N/01W-01H01 H 07/23/65 5050 1420	

MINERAL ANALYSIS OF GROUND WATER

	I			39	51	196	9.0	104	4 O		149	1102	306
R LITER	201	E00		001	93	313	100	516	179		194	2756	572 571
MILLIGRAMS PER	2013) I		1	1	1	1	1	1		1	1	1
	a	٥		0	0	:	0	1.5	•				•
M	2	-		1	1	1	1	1	ı			1	
IER	502	CON		000	000	7.4	000	00 ·	0 • 0 • 0 • 0 • 0		.23	3.5	4.4 .07 1
ITER PER LITER	VALUE	,		.39 29	.39 25	.79 .15	.37 23	112 3.16 36	, 830 31		8.1 .23	1170 32,99 81	184 5 19 50
MILLIGRAMS PER LITER MILLIEOUIVALENT PER	CTANCE	204		0.4.080	9 12	.08	4 • 0 • 08 5	000	0 • • • • • • • • • • • • • • • • • • •		21 • 44 13	79 1.64	2 2 8 8 0 0
	PERCENT REACTANCE VALUE	HCU3	·	87 65	1.07	240 3.94 74	1.15	300	108		144 2.36	352 5.77 14	4 . 366 4 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
MILL	PERCE	cns			000	8 8	000	.73 .8	00		2.0	8.0 .27	.13
NI SIZ		×		.02	4.0. 4.0.	3.7	1.7 .04 3	5.2 •13	0 • • • • • • • • • • • • • • • • • • •		2 • 5 • 0 6 2	102 2.61 7	0 1 4 1 4
CONSTITUENTS		ď		.57	.48 31	29 1.26 24	11 •48 30	156 6.79 75	1,00		8.6	355 15.44 39	3.74 3.74
		2		5 • 8 • 48 35	9.5 .78 51	25 25 39	7.8 .64 40	1.32	999 36		18 1•48 43	161	
MINERAL		۲,		6.0 .30 22	4 • 4 • 24 16	38 1 • 90 36	8 • • • • 2 8 2 8	.80 .9	. 70 . 26		30 1 • 50 44	176 8•78 22	5.54
	LA.	rLU-EC		148	159	495	151	856	569		317	4150	988
	LAB-PH	FLU-PH		8.1	8.2	8.6	8 2	8	0 • 8		8 • 3	B .	8 •
Г		I L M F		1	1	1	;	1	1			1	1
	(0.3											
	6.H.	3											
STATION NUMBER	DATE LAB	TIME SAMPLER	EUREKA PLAIN	03N/01W-05K01 H 07/27/65 5050 1505	04N/01W-08P01 H 10/11/65 5050 1440	04N/01W-16H01 H 08/28/65 5050 1545	04N/01W-17801 H 10/11/65 5050 1450	05N/01E-18U01 H 07/23/65 5050 1535	05N/01E-20001 H 07/23/65 5050 1525	EEL RIVER VALLEY	02N/01W-04D01 H 08/09/65 5050 1215	03N/02W-27601 H 07/27/65 5050 1605	03N/02W-35M01 H 07/27/65 5050 1620
514	70		EUR	0370	10,1	0 8 0	101	057	057	EEL	02,	037	0370

TABLE E-I (Continued)
MINERAL ANALYSIS OF GROUND WATER

				11 NE RAL		CONSTITUENTS	NI SI	MILLI	MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	PER LI	TER ER LITI	2	N N	LIGRA	MILLIGRAMS PER	LITER	1
LAB SAMPLER	TEMP F	LAB-PH FLD-PH	LAB-EC FLD-EC	CA	MG	ΥZ	×	PERCE CO3	PERCENT REACTANCE VALUE	SD4	VALUE CL	E O N	L	æ	S102	SUM	NCH
EEL RIVER VALLEY																	
		ω •	436	33	29 2•38 51	.61 13	1.8 .05	6.0	171 2.80 62	. 89 20	.62	0.7		•	1	256	200
	1	α • τ	427	. 05 44	2.14	9.1	1.8	00	210 3.44 76	. 54 12	.34	. 12 . 19			1	238	210
r	i	ω «	1870	.59	74 6.08 37	158 6.87 41	2.6	000	78 1,28 8	24.5	534 5.06 89	7.4	1	0	1	906	482
C3N/O2W-13JO1 H O8/O9/65 5050 1125 ROUND VALLEY	1	φ	2420	41	7.97	141 6•13 25	4 • 3 • 1 1	00	202 3•31 14	0 m m	706 9.91 83	0 0 0 0	1	•	1	1564	890
22N/12#-06L02 D 08/24/65 5050	1	7.9	359	34	1.40	1	1	1	1	. 25	ŀ	l	1	1	1	203	154
٥	1	8.1	280	. 20 34	1.32	14 •61 21	0.7	000	157 2.57 89	6.2 •13	6 . 5 6 . 5 6	.00		-	1	144	115
22N/12W-19F01 D 08/24/65 5350	-	8 • 3	543	37.	4.03	1	1	1	1	1	1	1	1	0	1	309	294
22N/13#-01J03 D 08/24/65 5050		7.7	543	.85	2.30	;	1	1	l	;	1	1	1	-	1	306	207
22N/13W-12K01 D 08/24/65 5050	1	7.9	306	• 20	1 • 32	15	-	1	-	1		1		0.	1	179	128
										1							

TABLE E-I (Continued)
MINERAL ANALYSIS OF GROUND WATER

	NCH	113	306	114	117	142	8 4 0	28	144	80
2	SUM	140	8 8 8	-		159	133	0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	209	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PER	5102		ŀ	1	-	:		-	1	1
MILLIGRAMS	9		<u>.</u>	1		0.	0	0	:	0
MIL	L		-			1	-			1
~	NO3		1			1	0000	.00	6 • 1 1 · · · · · · · · · · · · · · · · ·	. 0 . 0 1 .
ER R LITE	VALUE	1 • 1	1	-	1	1	9 • 8 1 2 8	4 • 2 • 12 15	8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ER LIT	W	1	2 • 3	-		ł	00	. 0.2 . 0.2 . 3	00000	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	DERCENT REACTANC	1	416 6.82 1		1	:	123 2.02 88	4 4 8 8 0 W	194 3.18 88	1177
MILLIG	CO3 H	1	000			1	000	000	8.0 .27 .7	0 0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Z v	Υ	;	ŀ		1	:	0 • 7	0.0 4 4	.01	0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
CDNSTITUENTS	4 Z	;	1		-	8.8	.65 27	. 2 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	18 •78 21	4 0 ° 0 7 4 0
	ΜG	10	31	8 • 3 • 6 8	15	1.40	.07 45	1 • 8 • 15 1 8	1 8 4 8 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0	9.8 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
11 NE PAL	A O	28 40	71 2 3 . 54 2	32	22 10 1	29	13 . 65 . 27	8 • • • • 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 .40 38	
	LA6-EC FLD-EC	254	624	241	254	302	227	85	2 2 3 3	4 1 8
	LAB-PH L	2.5	ن ق ق	7.6	8 1	7.4	7.2	7 • 8	8 • 0	φ •
	TEMP FL		ŀ	1	1	1	1	1	1	1
WELL	DATE LAB TIME SAMPLER	ROUND VALLEY 23N/12W-31N01 D 08/24/65 5050	23N/12W-33L01 D 08/24/65 5050	23K/13W-25P01 D 08/24/65 5050	23N/13W-36P02 D 08/24/65 5050	22N/13W-13A01 D 08/24/65 5050	IAYTONVILLE VALLEY 21h/14w-30M01 O 09/29/65 5050	21N/15W-12M02 D 09/29/65 5050	18N/13W-08L01 D 09/29/65 5050	18N/13W-16M01 D 09/29/65 5050

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

ELECTION OF THE PARTY OF T DUE YOUR LAST OFFI

JUN 5 REO'D

JAN 12 1987

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-55m-10, 68(J404888) 458-A-31, 5

3 1175 01002 9513

Nº 601061

California. Pepartment
of Vater Pesources.
Pullatin.

TC82L C2 #2 no.130:65 v.1

PHYSICAL SCIENCES LIBRARY c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

601061

California. Department of Water Resources. Bulletin.

TC824

A2

no.130:65

